OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 5759–5780

Factored form descent: a practical algorithm for coherence retrieval

Zhengyun Zhang, Zhi Chen, Shakil Rehman, and George Barbastathis  »View Author Affiliations


Optics Express, Vol. 21, Issue 5, pp. 5759-5780 (2013)
http://dx.doi.org/10.1364/OE.21.005759


View Full Text Article

Enhanced HTML    Acrobat PDF (1209 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We formulate coherence retrieval, the process of recovering via intensity measurements the two-point correlation function of a partially coherent field, as a convex weighted least-squares problem and show that it can be solved with a novel iterated descent algorithm using a coherent-modes factorization of the mutual intensity. This algorithm is more memory-efficient than the standard interior point methods used to solve convex problems, and we verify its feasibility by reconstructing the mutual intensity of a Schell-model source from both simulated data and experimental measurements.

© 2013 OSA

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(030.4070) Coherence and statistical optics : Modes
(100.5070) Image processing : Phase retrieval

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: November 29, 2012
Revised Manuscript: February 3, 2013
Manuscript Accepted: February 4, 2013
Published: March 1, 2013

Citation
Zhengyun Zhang, Zhi Chen, Shakil Rehman, and George Barbastathis, "Factored form descent: a practical algorithm for coherence retrieval," Opt. Express 21, 5759-5780 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-5-5759


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Born and E. Wolf, Principles of optics, 7th. ed. (Cambridge University, 2005).
  2. D. Dragoman, “Unambiguous coherence retrieval from intensity measurements,” J. Opt. Soc. Am. A20, 290–295 (2003). [CrossRef]
  3. M. G. Raymer, M. Beck, and D. McAlister, “Complex wave-field reconstruction using phase-space tomography,” Phys. Rev. Lett.72, 1137–1140 (1994). [CrossRef] [PubMed]
  4. D. F. McAlister, M. Beck, L. Clarke, A. Mayer, and M. G. Raymer, “Optical phase retrieval by phase-space tomography and fractional-order Fourier transforms,” Opt. Lett.20, 1181–1183 (1995). [CrossRef] [PubMed]
  5. C. Rydberg and J. Bengtsson, “Numerical algorithm for the retrieval of spatial coherence properties of partially coherent beams from transverse intensity measurements,” Opt. Express15, 13613–13623 (2007). [CrossRef] [PubMed]
  6. L. Tian, J. Lee, S. B. Oh, and G. Barbastathis, “Experimental compressive phase space tomography,” Opt. Express20, 8296–8308 (2012). [CrossRef] [PubMed]
  7. B. J. Thompson and E. Wolf, “Two-beam interference with partially coherent light,” J. Opt. Soc. Am.47, 895 (1957). [CrossRef]
  8. H. O. Bartelt, K.-H. Brenner, and A. W. Lohmann, “The Wigner distribution function and its optical production,” Opt. Commun.32, 32–38 (1980). [CrossRef]
  9. Y. Li, G. Eichmann, and M. Conner, “Optical Wigner distribution and ambiguity function for complex signals and images,” Opt. Commun.67, 177–179 (1988). [CrossRef]
  10. L. Waller, G. Situ, and J. W. Fleischer, “Phase-space measurement and coherence synthesis of optical beams,” Nature Photon.6, 474–479 (2012). [CrossRef]
  11. T. Asakura, H. Fujii, and K. Murata, “Measurement of spatial coherence using speckle patterns,” Optica Acta19, 273–290 (1972). [CrossRef]
  12. M. Michalski, E. E. Sicre, and H. J. Rabal, “Display of the complex degree of coherence due to quasi-monochromatic spatially incoherent sources,” Opt. Lett.10, 585–587 (1985). [CrossRef] [PubMed]
  13. J. C. Barreiro and J. O.-C. neda, “Degree of coherence: a lensless measuring technique,” Opt. Lett.18, 302–304 (1993). [CrossRef] [PubMed]
  14. H. Gamo, “Intensity matrix and degree of coherence,” J. Opt. Soc. Am.47, 976–976 (1957). [CrossRef]
  15. H. M. Ozaktas, S. Yüksel, and M. A. Kutay, “Linear algebraic theory of partial coherence: discrete fields and measures of partial coherence,” J. Opt. Soc. Am. A19, 1563–1571 (2002). [CrossRef]
  16. S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University, 2004).
  17. E. Wolf, “New theory of partial coherence in the space-frequency domain. Part I: spectra and cross spectra of steady-state sources,” J. Opt. Soc. Am.72, 343–351 (1982). [CrossRef]
  18. E. Polak and G. Ribiere, “Note sur la convergence de methodes de directions conjugées,” Rev. Fr. Inform. Rech. O.3, 35–43 (1969).
  19. A. C. Schell, “A technique for the determination of the radiation pattern of a partially coherent aperture,” IEEE Trans. Antennas Propag.15, 187–188 (1967). [CrossRef]
  20. A. Papoulis, “Ambiguity function in Fourier optics,” J. Opt. Soc. Am.64, 779–788 (1974). [CrossRef]
  21. K.-H. Brenner, A. W. Lohmann, and J. Ojeda-Castañeda, “The ambiguity function as a polar display of the OTF,” Opt. Commun.44, 323–326 (1983). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited