OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 5781–5792

Metrological characterization of custom-designed 894.6 nm VCSELs for miniature atomic clocks

F. Gruet, A. Al-Samaneh, E. Kroemer, L. Bimboes, D. Miletic, C. Affolderbach, D. Wahl, R. Boudot, G. Mileti, and R. Michalzik  »View Author Affiliations


Optics Express, Vol. 21, Issue 5, pp. 5781-5792 (2013)
http://dx.doi.org/10.1364/OE.21.005781


View Full Text Article

Enhanced HTML    Acrobat PDF (1675 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the characterization and validation of custom-designed 894.6 nm vertical-cavity surface-emitting lasers (VCSELs), for use in miniature Cs atomic clocks based on coherent population trapping (CPT). The laser relative intensity noise (RIN) is measured to be 1 × 10−11 Hz−1 at 10 Hz Fourier frequency, for a laser power of 700 μW. The VCSEL frequency noise is 1013 · f−1 Hz2/Hz in the 10 Hz < f < 105 Hz range, which is in good agreement with the VCSEL’s measured fractional frequency instability (Allan deviation) of ≈ 1 × 10−8 at 1 s, and also is consistent with the VCSEL’s typical optical linewidth of 20–25 MHz. The VCSEL bias current can be directly modulated at 4.596 GHz with a microwave power of −6 to +6 dBm to generate optical sidebands for CPT excitation. With such a VCSEL, a 1.04 kHz linewidth CPT clock resonance signal is detected in a microfabricated Cs cell filled with Ne buffer gas. These results are compatible with state-of-the-art CPT-based miniature atomic clocks exhibiting a short-term frequency instability of 2–3×10−11 at τ = 1 s and few 10−12 at τ = 104 s integration time.

© 2013 OSA

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(300.6320) Spectroscopy : Spectroscopy, high-resolution
(140.7260) Lasers and laser optics : Vertical cavity surface emitting lasers

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: December 10, 2012
Revised Manuscript: January 30, 2013
Manuscript Accepted: February 6, 2013
Published: March 1, 2013

Citation
F. Gruet, A. Al-Samaneh, E. Kroemer, L. Bimboes, D. Miletic, C. Affolderbach, D. Wahl, R. Boudot, G. Mileti, and R. Michalzik, "Metrological characterization of custom-designed 894.6 nm VCSELs for miniature atomic clocks," Opt. Express 21, 5781-5792 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-5-5781


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt.35, 257–354 (1996). [CrossRef]
  2. S. Knappe, “MEMS atomic clocks,” in Comprehensive Microsystems, Y. Gianchandani, O. Tabata, and H. Zappe, eds. (Elsevier B.V., 2010), 3, pp. 571–612.
  3. C. Affolderbach, A. Nagel, S. Knappe, C. Jung, D. Wiedenmann, and R. Wynands, “Nonlinear spectroscopy with a vertical-cavity surface-emitting laser,” Appl. Phys. B70, 407–413 (2000). [CrossRef]
  4. M. Stähler, R. Wynands, S. Knappe, J. Kitching, L. Hollberg, A. Taichenachev, and V. Yudin, “Coherent population trapping resonances in thermal 85Rb vapor: D1 versus D2 line excitation,” Opt. Lett.27, 1472–1474 (2002). [CrossRef]
  5. R. Lutwak, D. Emmons, T. English, W. Riley, A. Duwel, M. Varghese, D. K. Serkland, and G. M. Peake, “The chip-scale atomic clock – recent development progress,” in Proceedings of the 35th Precise Time and Time Interval Systems Applications Meeting (PTTI 2003), L. Breakiron, ed. (US Naval Observatory, 2003), 467–478.
  6. D. K. Serkland, G. M. Peake, K. M. Geib, R. Lutwak, R. M. Garvey, M. Varghese, and M. Mescher, “VCSELs for atomic clocks,” Proc. SPIE6132, 613208 (2006). [CrossRef]
  7. A. Al-Samaneh, M. Bou Sanayeh, S. Renz, D. Wahl, and R. Michalzik, “Polarization control and dynamic properties of VCSELs for MEMS atomic clock applications,” IEEE Photon. Technol. Lett.23, 1049–1051 (2011). [CrossRef]
  8. R. Michalzik, “VCSEL fundamentals,” Chap. 2 in VCSELs, R. Michalzik ed., Springer Series in Optical Sciences166 (Springer, 2013), pp. 19–75.
  9. A. Al-Samaneh, S. Renz, A. Strodl, W. Schwarz, D. Wahl, and R. Michalzik, “Polarization-stable single-mode VCSELs for Cs-based MEMS atomic clock applications,” in Semiconductor Lasers and Laser Dynamics IV, Proc. SPIE7720, 772006 (2010). [CrossRef]
  10. A. Al-Samaneh, M. Bou Sanayeh, M. J. Miah, W. Schwarz, D. Wahl, A. Kern, and R. Michalzik, “Polarization-stable vertical-cavity surface-emitting lasers with inverted grating relief for use in microscale atomic clocks,” Appl. Phys. Lett.101, 171104 (2012). [CrossRef]
  11. J. M. Ostermann and R. Michalzik, “Polarization control of VCSELs,” Chap. 5 in VCSELs,R. Michalzik ed., Springer Series in Optical Sciences166 (Springer, 2013), pp. 147–179.
  12. G. Di Domenico, S. Schilt, and P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Opt.49, 4801–4807 (2010). [CrossRef] [PubMed]
  13. R. Wynands and A. Nagel, “Inversion of frequency-modulation spectroscopy line shapes,” J. Opt. Soc. Am. B16, 1617–1622 (1999). [CrossRef]
  14. R. Lutwak, A. Rashed, M. Varghese, G. Tepolt, J. Leblanc, M. Mescher, D. K. Serkland, K. M. Geib, and G. M. Peake, “CSAC: The chip scale atomic clock,” in Proceedings of the 7th Symp. Freq. Standards and Metrology, L. Maleki, ed. (World Scientific, 2008), 454–462.
  15. J. C. Camparo and J. G. Coffer, “Conversion of laser phase noise to amplitude noise in a resonant atomic vapor: The role of laser linewidth,” Phys. Rev. A59, 728–735 (2005). [CrossRef]
  16. D. Miletic, C. Affolderbach, M. Hasegawa, R. Boudot, C. Gorecki, and G. Mileti, “AC Stark-shift in CPT-based Cs miniature atomic clocks,” Appl. Phys. B109, 89–97 (2012). [CrossRef]
  17. E. Rubiola, Phase Noise and Frequency Stability of Oscillators (Cambridge University, 2010), Chap. 1.
  18. X. Liu and R. Boudot, “A distributed-feedback diode laser frequency stabilized on Doppler-free Cs D1 line,” IEEE Trans. Instr. Meas.61, 2852–2855 (2012). [CrossRef]
  19. S. Knappe, R. Wynands, J. Kitching, H. G. Robinson, and L. Hollberg, “Characterization of coherent population-trapping resonances as atomic frequency references,” J. Opt. Soc. Am. B18, 1545–1553 (2001). [CrossRef]
  20. M. Hasegawa, R. K. Chutani, C. Gorecki, R. Boudot, P. Dziuban, V. Giordano, S. Clatot, and L. Mauri, “Microfabrication of cesium vapor cells with buffer gas for MEMS atomic clocks,” Sensors Actuat. A: Phys.167, 594–601 (2011). [CrossRef]
  21. D. Miletic, P. Dziuban, R. Boudot, M. Hasegawa, R. K. Chutani, G. Mileti, V. Giordano, and C. Gorecki, “Quadratic dependence on temperature of Cs 0-0 hyperfine resonance frequency in single Ne buffer gas microfabricated vapor cell,” Electron. Lett.46, 1069–1071 (2010). [CrossRef]
  22. R. Boudot, P. Dziuban, M. Hasegawa, R. K. Chutani, S. Galliou, V. Giordano, and C. Gorecki, “Coherent population trapping resonances in Cs-Ne vapor microcells for miniature clocks applications,” J. Appl. Phys.109, 014912 (2011). [CrossRef]
  23. O. Kozlova, S. Guérandel, and E. De Clercq, “Temperature and pressure shifts of the Cs clock transition in the presence of buffer gases: Ne, N2, Ar,” Phys. Rev. A83, 062714 (2011). [CrossRef]
  24. F. Gruet, L. Bimboes, D. Miletic, C. Affolderbach, G. Mileti, A. Al-Samaneh, D. Wahl, and R. Michalzik, “Spectral characterisation of VCSELs emitting at 894 nm for CPT-based miniature atomic clocks,” in Proceedings of the Conference on Lasers and Electro-Optics Europe, CLEO/Europe 2011, Munich, Germany, May 2011, paper CB.P.27.
  25. M. Huang and J. Camparo, “The influence of laser polarization variations on CPT atomic clock signals,” in Proceedings of the Joint Conference of the IEEE International Frequency Control Symposium & European Frequency and Time Forum (The Institute of Electrical and Electronics Engineers Inc., 2011), 951–954.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited