OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 5793–5802

Endless frequency shifting of optical frequency comb lines

Erik Benkler, Felix Rohde, and Harald R. Telle  »View Author Affiliations

Optics Express, Vol. 21, Issue 5, pp. 5793-5802 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2985 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The functional principle of a novel technique for frequency shifting lines of an optical frequency comb is demonstrated. The underlying principle is to shift the carrier frequency by changing the carrier phase within the time span between subsequent pulses of a mode-locked laser used as comb generator. This universal frequency shifter does not require intrusion into the comb generator and provides high agility for arbitrary temporal frequency evolutions.

© 2013 OSA

OCIS Codes
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(120.4800) Instrumentation, measurement, and metrology : Optical standards and testing
(140.3600) Lasers and laser optics : Lasers, tunable

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: December 5, 2012
Revised Manuscript: December 28, 2012
Manuscript Accepted: December 29, 2012
Published: March 1, 2013

Erik Benkler, Felix Rohde, and Harald R. Telle, "Endless frequency shifting of optical frequency comb lines," Opt. Express 21, 5793-5802 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical Frequency Synthesizer for Precision Spectroscopy,” Phys. Rev. Lett.85(11), 2264–2267 (2000). [CrossRef] [PubMed]
  2. J. Ye and S. T. Cundiff, Femtosecond Optical Frequency Comb: Principle, Operation, and Applications, (Kluwer Academic Publishers / Springer, 2005), http://jila.colorado.edu/yelabs/pubs/scienceArticles/2005/sArticle_2005_YeCundiff_CombBook.pdf .
  3. K. Shimizu, T. Horiguchi, and Y. Koyamada, “Technique for translating light-wave frequency by using an optical ring circuit containing a frequency shifter,” Opt. Lett.17(18), 1307–1309 (1992). [CrossRef] [PubMed]
  4. J. D. Jost, J. L. Hall, and J. Ye, “Continuously tunable, precise, single frequency optical signal generator,” Opt. Express10(12), 515–520 (2002). [CrossRef] [PubMed]
  5. T. R. Schibli, K. Minoshima, E. L. Hong, H. Inaba, Y. Bitou, A. Onae, and H. Matsumoto, “Phase-locked widely tunable optical single-frequency generator based on a femtosecond comb,” Opt. Lett.30(17), 2323–2325 (2005). [CrossRef] [PubMed]
  6. V. Ahtee, M. Merimaa, and K. Nyholm, “Single-frequency synthesis at telecommunication wavelengths,” Opt. Express17(6), 4890–4896 (2009). [CrossRef] [PubMed]
  7. S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics4(11), 760–766 (2010). [CrossRef]
  8. I. Coddigton, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing Fast Arbitrary CW Waveforms With 1500 THz/s Instantaneous Chirps,” IEEE J. Sel. Top. Quantum Electron.18(1), 228–238 (2012). [CrossRef]
  9. O. Gobert, P. M. Paul, J. F. Hergott, O. Tcherbakoff, F. Lepetit, P. D. Oliveira, F. Viala, and M. Comte, “Carrier-envelope phase control using linear electro-optic effect,” Opt. Express19(6), 5410–5418 (2011). [CrossRef] [PubMed]
  10. K. Yonekura, L. Jin, and K. Takizawa, “Measurement of Dispersion of Effective Electro-Optic Coefficients r13E and r33E of Non-Doped Congruent LiNbO3 Crystal,” Jpn. J. Appl. Phys.47(7), 5503–5508 (2008). [CrossRef]
  11. R. E. Saperstein, N. Alić, D. Panasenko, R. Rokitski, and Y. Fainman, “Time-domain waveform processing by chromatic dispersion for temporal shaping of optical pulses,” J. Opt. Soc. Am. B22(11), 2427–2436 (2005). [CrossRef]
  12. H. R. Telle, B. Lipphardt, and J. Stenger, “Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements,” Appl. Phys. B74(1), 1–6 (2002). [CrossRef]
  13. N. Haverkamp, H. Hundertmark, C. Fallnich, and H. R. Telle, “Frequency stabilization of mode-locked Erbium fiber lasers using pump power control,” Appl. Phys. B78(3-4), 321–324 (2004). [CrossRef]
  14. R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B82(2), 265–273 (2006). [CrossRef]
  15. H. R. Telle, “Absolute Measurement of Optical Frequencies,” in Frequency Control of Semiconductor Lasers, M. Ohtsu ed. (Wiley, 1996), Chap. 5, pp. 137.
  16. F. L. Walls, “Phase noise issues in femtosecond lasers,” Proc. SPIE4269, 170–177 (2001). [CrossRef]
  17. F. L. Walls and A. DeMarchi, “RF Spectrum of a Signal After Frequency Multiplication; Measurement and Comparison with a Simple Calculation,” IEEE Trans. Instrum. Meas.24(3), 210–217 (1975). [CrossRef]
  18. M. Izutsu, S. Shikama, and T. Sueta, “Integrated Optical SSB Modulator/Frequency Shifter,” IEEE J. Quantum Electron.17(11), 2225–2227 (1981). [CrossRef]
  19. R. Kohlhaas, T. Vanderbruggen, S. Bernon, A. Bertoldi, A. Landragin, and P. Bouyer, “Robust laser frequency stabilization by serrodyne modulation,” Opt. Lett.37(6), 1005–1007 (2012). [CrossRef] [PubMed]
  20. M. A. Duguay and J. W. Hansen, “Optical frequency shifting of a modelocked laser beam,” IEEE J. Quantum Electron.4(8), 477–481 (1968). [CrossRef]
  21. M. Thompson, “Low-Latency, High-speed Numerically Controlled Oscillator Using Progression-of-States Technique,” IEEE J. Solid-St. Circulation27, 113–117 (1992).
  22. L. Cordesses, “Direct Digital Synthesis: A Tool for Periodic Wave Generation (Part 1),” IEEE Signal Process. Mag.21(4), 50–54 (2004). [CrossRef]
  23. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, and T. Udem, “Fabry–Pérot filter cavities for wide-spaced frequency combs with large spectral bandwidth,” Appl. Phys. B96(2-3), 251–256 (2009). [CrossRef]
  24. http://youtu.be/8XOGWFBGroc .
  25. http://youtu.be/JBkFEaoUQHQ

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

Supplementary Material

» Media 1: MOV (4054 KB)     
» Media 2: MOV (4041 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited