OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 5842–5858

Design of ultra-broadband terahertz polymer waveguide emitters for telecom wavelengths using coupled mode theory

Felipe A. Vallejo and L. Michael Hayden  »View Author Affiliations


Optics Express, Vol. 21, Issue 5, pp. 5842-5858 (2013)
http://dx.doi.org/10.1364/OE.21.005842


View Full Text Article

Enhanced HTML    Acrobat PDF (4832 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We use coupled mode theory, adequately incorporating optical losses, to model ultra-broadband terahertz (THz) waveguide emitters (0.1-20 THz) based on difference frequency generation of femtosecond infrared (IR) optical pulses. We apply the model to a generic, symmetric, five-layer, metal/cladding/core waveguide structure using transfer matrix theory. We provide a design strategy for an efficient ultra-broadband THz emitter and apply it to polymer waveguides with a nonlinear core composed of a poled guest-host electro-optic polymer composite and pumped by a pulsed fiber laser system operating at 1567 nm. The predicted bandwidths are greater than 15 THz and we find a high conversion efficiency of 1.2 × 10−4 W−1 by balancing both the modal phase-matching and effective mode attenuation.

© 2013 OSA

OCIS Codes
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Ultrafast Optics

History
Original Manuscript: December 12, 2012
Revised Manuscript: February 20, 2013
Manuscript Accepted: February 22, 2013
Published: March 1, 2013

Citation
Felipe A. Vallejo and L. Michael Hayden, "Design of ultra-broadband terahertz polymer waveguide emitters for telecom wavelengths using coupled mode theory," Opt. Express 21, 5842-5858 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-5-5842


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. Zheng, C. V. McLaughlin, P. D. Cunningham, and L. M. Hayden, “Organic broadband terahertz sources and sensors,” J. Nanoelectron. Optoelectron.2(1), 58–76 (2007). [CrossRef]
  2. K. Liu, J. Xu, and X.-C. Zhang, “GaSe crystals for broadband terahertz wave detection,” Appl. Phys. Lett.85(6), 863–865 (2004). [CrossRef]
  3. U. Peschel, K. Bubke, D. C. Hutchings, J. S. Aitchison, and J. M. Arnold, “Optical rectification in a traveling-wave geometry,” Phys. Rev. A60(6), 4918–4926 (1999). [CrossRef]
  4. Y. J. Ding, “Terahertz parametric converters by use of novel metallic-dielectric hybrid waveguides,” J. Opt. Soc. Am. B23(7), 1354–1359 (2006). [CrossRef]
  5. A. Marandi, T. E. Darcie, and P. P. M. So, “Design of a continuous-wave tunable terahertz source using waveguide-phase-matched GaAs,” Opt. Express16(14), 10427–10433 (2008). [CrossRef] [PubMed]
  6. M. Cherchi, A. Taormina, A. C. Busacca, R. L. Oliveri, S. Bivona, A. C. Cino, S. Stivala, S. R. Sanseverino, and C. Leone, “Exploiting the optical quadratic nonlinearity of zinc-blende semiconductors for guided-wave terahertz generation: a material comparison,” IEEE J. Quantum Electron.46(3), 368–376 (2010). [CrossRef]
  7. C. Staus, T. Kuech, and L. McCaughan, “Continuously phase-matched terahertz difference frequency generation in an embedded-waveguide structure supporting only fundamental modes,” Opt. Express16(17), 13296–13303 (2008). [CrossRef] [PubMed]
  8. Z. Ruan, G. Veronis, K. L. Vodopyanov, M. M. Fejer, and S. Fan, “Enhancement of optics-to-THz conversion efficiency by metallic slot waveguides,” Opt. Express17(16), 13502–13515 (2009). [CrossRef] [PubMed]
  9. T. Chen, J. Sun, L. Li, and J. Tang, “Proposal for efficient terahertz-wave difference frequency generation in an AlGaAs photonic crystal waveguide,” J. Lightwave Technol.30(13), 2156–2162 (2012). [CrossRef]
  10. Y. Li, X. Hu, F. Liu, J. Li, Q. Xing, M. Hu, C. Lu, and C. Wang, “Terahertz waveguide emitters in photonic crystal fiber form,” J. Opt. Soc. Am. B29(11), 3114–3118 (2012). [CrossRef]
  11. Z. Wang, H. Liu, N. Huang, Q. Sun, and J. Wen, “Efficient terahertz-wave generation via four-wave mixing in silicon membrane waveguides,” Opt. Express20(8), 8920–8928 (2012). [CrossRef] [PubMed]
  12. F. F. Lu, T. Li, J. Xu, Z. D. Xie, L. Li, S. N. Zhu, and Y. Y. Zhu, “Surface plasmon polariton enhanced by optical parametric amplification in nonlinear hybrid waveguide,” Opt. Express19(4), 2858–2865 (2011). [CrossRef] [PubMed]
  13. S. B. Hasan, C. Rockstuhl, T. Pertsch, and F. Lederer, “Second-order nonlinear frequency conversion processes in plasmonic slot waveguides,” J. Opt. Soc. Am. B29(7), 1606–1611 (2012). [CrossRef]
  14. F. M. Pigozzo, D. Modotto, and S. Wabnitz, “Second harmonic generation by modal phase matching involving optical and plasmonic modes,” Opt. Lett.37(12), 2244–2246 (2012). [CrossRef] [PubMed]
  15. S. B. Bodrov, I. E. Ilyakov, B. V. Shishkin, and A. N. Stepanov, “Efficient terahertz generation by optical rectification in Si-LiNbO3-air-metal sandwich structure with variable air gap,” Appl. Phys. Lett.100(20), 201114 (2012). [CrossRef]
  16. M. I. Bakunov, S. B. Bodrov, A. V. Maslov, and M. Hangyo, “Theory of terahertz generation in a slab of electro-optic material using an ultrashort laser pulse focused to a line,” Phys. Rev. B76(8), 085346 (2007). [CrossRef]
  17. Y.-C. Huang, T.-D. Wang, Y.-H. Lin, C.-H. Lee, M.-Y. Chuang, Y.-Y. Lin, and F.-Y. Lin, “Forward and backward THz-wave difference frequency generations from a rectangular nonlinear waveguide,” Opt. Express19(24), 24577–24582 (2011). [CrossRef] [PubMed]
  18. V. Berger and C. Sirtori, “Nonlinear phase matching in THz semiconductor waveguides,” Semicond. Sci. Technol.19(8), 964–970 (2004). [CrossRef]
  19. H. Cao, R. A. Linke, and A. Nahata, “Broadband generation of terahertz radiation in a waveguide,” Opt. Lett.29(15), 1751–1753 (2004). [CrossRef] [PubMed]
  20. G. Chang, C. J. Divin, J. Yang, M. A. Musheinish, S. L. Williamson, A. Galvanauskas, and T. B. Norris, “GaP waveguide emitters for high power broadband THz generation pumped by Yb-doped fiber lasers,” Opt. Express15(25), 16308–16315 (2007). [CrossRef] [PubMed]
  21. F. Peter, S. Winnerl, H. Schneider, and M. Helm, “Excitation wavelength dependence of phase matched terahertz emission from a GaAs slab,” Opt. Express18(19), 19574–19580 (2010). [CrossRef] [PubMed]
  22. K. Saito, T. Tanabe, Y. Oyama, K. Suto, and J.-i. Nishizawa, “Terahertz-wave generation by GaP rib waveguides via collinear phase-matched difference-frequency mixing of near-infrared lasers,” J. Appl. Phys.105(6), 063102 (2009). [CrossRef]
  23. V. A. Kukushkin, “Generation of terahertz pulses from tightly focused single near-infrared pulses in double-plasmon waveguides,” J. Opt. Soc. Am. B25(5), 818–824 (2008). [CrossRef]
  24. K. Saito, T. Tanabe, and Y. Oyama, “Elliptically polarized THz-wave generation from GaP-THz planar waveguide via collinear phase-matched difference frequency mixing,” Opt. Express20(23), 26082–26088 (2012). [CrossRef] [PubMed]
  25. P. Bienstman, “Rigorous and efficient modeling of wavelength scale photonic components,” (Universiteit Gent 2000–2001).
  26. Y.-F. Li and J. W. Y. Lit, “General formulas for the guiding properties of a multilayer slab waveguide,” J. Opt. Soc. Am. A4(4), 671–677 (1987). [CrossRef]
  27. X. Ying and I. Katz, “A simple reliable solver for all the roots of a nonlinear function in a given domain,” Computing41(4), 317–333 (1989). [CrossRef]
  28. R. E. Smith, G. W. Forbes, and S. N. Houde-Walter, “Unfolding the multivalued planar waveguide dispersion relation,” IEEE J. Quantum Electron.29(4), 1031–1034 (1993). [CrossRef]
  29. K. D. Singer, M. G. Kuzyk, and J. E. Sohn, “Second-order nonlinear-optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B4(6), 968–976 (1987). [CrossRef]
  30. A. Nahata, J. Shan, J. T. Yardley, and C. Wu, “Electro-optic determination of the nonlinear-optical properties of a covalently functionalized Disperse Red 1 copolymer,” J. Opt. Soc. Am. B10(9), 1553–1564 (1993). [CrossRef]
  31. Ş. E. Kocabaş, G. Veronis, D. A. B. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B79(3), 035120 (2009). [CrossRef]
  32. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  33. P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys.109(4), 043505 (2011). [CrossRef]
  34. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1998), Vol. I - III.
  35. M. A. Ordal, R. J. Bell, R. W. Alexander, L. A. Newquist, and M. R. Querry, “Optical properties of Al, Fe, Ti, Ta, W, and Mo at submillimeter wavelengths,” Appl. Opt.27(6), 1203–1209 (1988). [CrossRef] [PubMed]
  36. S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater.29(11), 1481–1490 (2007). [CrossRef]
  37. M. Dellnitz, O. Schütze, and Q. Zheng, “Locating all the zeros of an analytic function in one complex variable,” J. Comput. Appl. Math.138(2), 325–333 (2002). [CrossRef]
  38. P. N. Robson and P. C. Kendall, eds. Rib Waveguide Theory by the Spectral Index Method (Electronic and Electrical Engineering Research Studies: Optoelectronics Series) (Wiley, 1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited