OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 5879–5890

Spectral engineering by Gaussian phase-matching for quantum photonics

P. Ben Dixon, Jeffrey H. Shapiro, and Franco N. C. Wong  »View Author Affiliations


Optics Express, Vol. 21, Issue 5, pp. 5879-5890 (2013)
http://dx.doi.org/10.1364/OE.21.005879


View Full Text Article

Enhanced HTML    Acrobat PDF (1157 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate Gaussian-shaped phase matching of a periodically-poled potassium titanyl phosphate (PPKTP) crystal by imposing a custom duty-cycle pattern on its grating structure while keeping the grating period fixed. The PPKTP’s phase-matching characteristics are verified through optical difference-frequency generation measurements, showing good agreement with expected values based on our design parameters. Our theoretical analysis predicts that under extended phase-matching conditions the custom-poled PPKTP crystal is capable of generating heralded single photons with a spectral purity of 97%, and can reach as high as 99.5% with gentle spectral filtering, something that is highly desirable for photonic quantum information processing applications.

© 2013 OSA

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: December 21, 2012
Revised Manuscript: February 21, 2013
Manuscript Accepted: February 21, 2013
Published: March 1, 2013

Citation
P. Ben Dixon, Jeffrey H. Shapiro, and Franco N. C. Wong, "Spectral engineering by Gaussian phase-matching for quantum photonics," Opt. Express 21, 5879-5890 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-5-5879


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Kok, H. Lee, and J. P. Dowling, “Creation of large-photon-number path entanglement conditioned on photodetection,” Phys. Rev. A65, 052104 (2002). [CrossRef]
  2. T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science316, 726–729 (2007). [CrossRef] [PubMed]
  3. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: Beating the standard quantum limit,” Science306, 1330–1336 (2004). [CrossRef] [PubMed]
  4. M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys.3, 692–695 (2007). [CrossRef]
  5. R. Kaltenbaek, R. Prevedel, M. Aspelmeyer, and A. Zeilinger, “High-fidelity entanglement swapping with fully independent sources,” Phys. Rev. A79, 040302 (2009). [CrossRef]
  6. S. Aaronson and A. Arkhipov, “The computational complexity of linear optics,” arXiv:1011.3245 [quant-ph] (2010).
  7. A. Aspuru-Guzik and P. Walther, “Photonic quantum simulators,” Nat. Phys.8, 285–291 (2012). [CrossRef]
  8. T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hoffenberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature488, 57–60 (2012). [CrossRef] [PubMed]
  9. A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical stark effect,” Phys. Rev. Lett.103, 217402 (2009). [CrossRef]
  10. J. Chen, K. F. Lee, C. Liang, and P. Kumar, “Fiber-based telecom-band degenerate-frequency source of entangled photon pairs,” Opt. Lett.31, 2798–2800 (2006). [CrossRef] [PubMed]
  11. C. K. Hong and L. Mandel, “Theory of parametric frequency down conversion of light,” Phys. Rev. A31, 2409–2418 (1985). [CrossRef] [PubMed]
  12. C. Gerry and P. Knight, Introductory Quantum Optics (Cambridge University Press, 2004). [CrossRef]
  13. P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett.100, 133601 (2008). [CrossRef] [PubMed]
  14. A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Las. Phys.15, 146 (2005).
  15. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett.59, 2044–2046 (1987). [CrossRef] [PubMed]
  16. R. Kaltenbaek, B. Blauensteiner, M. Żukowski, M. Aspelmeyer, and A. Zeilinger, “Experimental interference of independent photons,” Phys. Rev. Lett.96, 240502 (2006). [CrossRef] [PubMed]
  17. W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A64, 063815 (2001). [CrossRef]
  18. O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Joint temporal density measurements for two-photon state characterization,” Phys. Rev. Lett.101, 153602 (2008). [CrossRef] [PubMed]
  19. O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett.102, 123603 (2009). [CrossRef] [PubMed]
  20. R. Rangarajan, L. E. Vicent, A. B. U’Ren, and P. G. Kwiat, “Engineering an ideal indistinguishable photon-pair source for optical quantum information processing,” J. Mod. Opt.58, 318–327 (2011). [CrossRef]
  21. A. M. Brańczyk, A. Fedrizzi, T. M. Stace, T. C. Ralph, and A. G. White, “Engineered optical nonlinearity for quantum light sources,” Opt. Express19, 55–65 (2011). [CrossRef]
  22. T. Gerrits, M. J. Stevens, B. Baek, B. Calkins, A. Lita, S. Glancy, E. Knill, S. W. Nam, R. P. Mirin, R. H. Hadfield, R. S. Bennink, W. P. Grice, S. Dorenbos, T. Zijlstra, T. Klapwijk, and V. Zwiller, “Generation of degenerate, factorizable, pulsed squeezed light at telecom wavelengths,” Opt. Express19, 24434–24447 (2011). [CrossRef] [PubMed]
  23. E. Pomarico, B. Sanguinetti, C. I. Osorio, H. Herrmann, and R. T. Thew, “Engineering integrated pure narrow-band photon sources,” New J. Phys.14, 033008 (2012). [CrossRef]
  24. I. Ali Khan and J. C. Howell, “Experimental demonstration of high two-photon time-energy entanglement,” Phys. Rev. A73, 031801 (2006). [CrossRef]
  25. Y.-P. Huang, J. B. Altepeter, and P. Kumar, “Heralding single photons without spectral factorability,” Phys. Rev. A82, 043826 (2010). [CrossRef]
  26. R. S. Bennink, “Optimal collinear Gaussian beams for spontaneous parametric down-conversion,” Phys. Rev. A81, 053805 (2010). [CrossRef]
  27. C. K. Law, I. A. Walmsley, and J. H. Eberly, “Continuous frequency entanglement: Effective finite Hilbert space and entropy control,” Phys. Rev. Lett.84, 5304–5307 (2000). [CrossRef] [PubMed]
  28. C. K. Law and J. H. Eberly, “Analysis and interpretation of high transverse entanglement in optical parametric down conversion,” Phys. Rev. Lett.92, 127903 (2004). [CrossRef] [PubMed]
  29. R. Erdmann, D. Branning, W. Grice, and I. A. Walmsley, “Restoring dispersion cancellation for entangled photons produced by ultrashort pulses,” Phys. Rev. A62, 053810 (2000). [CrossRef]
  30. V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Generating entangled two-photon states with coincident frequencies,” Phys. Rev. Lett.88, 183602 (2002).
  31. O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Two-Photon Coincident-Frequency Entanglement via Extended Phase Matching,” Phys. Rev. Lett.94, 083601 (2005). [CrossRef] [PubMed]
  32. V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Extended phase-matching conditions for improved entanglement generation,” Phys. Rev. A66, 043813 (2002). [CrossRef]
  33. P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys.10, 093011 (2008). [CrossRef]
  34. A. Christ, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Pure single photon generation by type-I PDC with backward-wave amplification,” Opt. Express17, 3441–3446 (2009). [CrossRef] [PubMed]
  35. M. G. Raymer, J. Noh, K. Banaszek, and I. A. Walmsley, “Pure-state single-photon wave-packet generation by parametric down-conversion in a distributed microcavity,” Phys. Rev. A72, 023825 (2005). [CrossRef]
  36. R. Boyd, Nonlinear optics (Academic Press, 1992).
  37. M. Fejer, G. Magel, D. Jundt, and R. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quant.Electron.28, 2631–2654 (1992). [CrossRef]
  38. M. A. Arbore, A. Galvanauskas, D. Harter, M. H. Chou, and M. M. Fejer, “Engineerable compression of ultrashort pulses by use of second-harmonic generation in chirped-period-poled lithium niobate,” Opt. Lett.22, 1341–1343 (1997). [CrossRef]
  39. M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett.100, 183601 (2008). [CrossRef] [PubMed]
  40. T. Y. Fan, C. E. Huang, B. Q. Hu, R. C. Eckardt, Y. X. Fan, R. L. Byer, and R. S. Feigelson, “Second harmonic generation and accurate index of refraction measurements in flux-grown KTiOPO4,” Appl. Opt.26, 2390–2394 (1987). [CrossRef] [PubMed]
  41. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett.22, 1553–1555 (1997). [CrossRef]
  42. K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett.74, 914–916 (1999). [CrossRef]
  43. F. König and F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group-velocity mismatch,” Appl. Phys. Lett.84, 1644–1646 (2004). [CrossRef]
  44. S. Popescu and D. Rohrlich, “Thermodynamics and the measure of entanglement,” Phys. Rev. A56, R3319–R3321 (1997). [CrossRef]
  45. O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Time-resolved single-photon detection by femtosecond upconversion,” Opt. Lett.33, 2257–2259 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited