OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 5891–5896

Luminescence enhancement of ZnO-core/a-SiNx:H-shell nanorod arrays

Rui Huang, Shuigang Xu, Yanqing Guo, Wenhao Guo, Xiang Wang, Chao Song, Jie Song, Lin Wang, Kin Ming Ho, and Ning Wang  »View Author Affiliations

Optics Express, Vol. 21, Issue 5, pp. 5891-5896 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1558 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a remarkable improvement of photoluminescence from ZnO-core/a-SiNx:H-shell nanorod arrays by modulating the bandgap of a-SiNx:H shell. The a-SiNx:H shell with a large bandgap can significantly enhance UV emission by more than 8 times compared with the uncoated ZnO nanorods. Moreover, it is found that the deep-level defect emission can be almost completely suppressed for all the core–shell nanostructures, which is independent of the bandgaps of a-SiNx:H shells. Combining with the analysis of infrared absorption spectrum and luminescence characteristics of NH3-plasma treated ZnO nanorods, the improved photoluminescence is attributed to the decrease of nonradiative recombination probability and the reduction of surface band bending of ZnO cores due to the H and N passivation and the screening effect from the a-SiNx:H shells. Our findings open up new possibilities for fabricating stable and efficient UV-only emitting devices.

© 2013 OSA

OCIS Codes
(250.5230) Optoelectronics : Photoluminescence
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: January 2, 2013
Revised Manuscript: February 11, 2013
Manuscript Accepted: February 11, 2013
Published: March 1, 2013

Rui Huang, Shuigang Xu, Yanqing Guo, Wenhao Guo, Xiang Wang, Chao Song, Jie Song, Lin Wang, Kin Ming Ho, and Ning Wang, "Luminescence enhancement of ZnO-core/a-SiNx:H-shell nanorod arrays," Opt. Express 21, 5891-5896 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001). [CrossRef] [PubMed]
  2. Q. Yang, W. Wang, S. Xu, and Z. L. Wang, “Enhancing light emission of ZnO microwire-based diodes by piezo-phototronic effect,” Nano Lett.11(9), 4012–4017 (2011). [CrossRef] [PubMed]
  3. S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol.6(8), 506–510 (2011). [CrossRef] [PubMed]
  4. H.-Y. Li, S. Rühle, R. Khedoe, A. F. Koenderink, and D. Vanmaekelbergh, “Polarization, Microscopic Origin, and Mode Structure of Luminescence and Lasing from Single ZnO Nanowires,” Nano Lett.9(10), 3515–3520 (2009). [CrossRef] [PubMed]
  5. S. K. Jha, C. Luan, C. H. To, O. Kutsay, J. Kováč, J. A. Zapien, I. Bello, and S.-T. Lee, “ZnO-nanorod-array/p-GaN high-performance ultra-violet light emitting devices prepared by simple solution synthesis,” Appl. Phys. Lett.101(21), 211116 (2012). [CrossRef]
  6. M. D. McCluskey and S. J. Jokela, “Defects in ZnO,” J. Appl. Phys.106(7), 071101 (2009). [CrossRef]
  7. B. Panigrahy, M. Aslam, D. S. Misra, M. Ghosh, and D. Bahadur, “Defect-Related Emissions and Magnetization Properties of ZnO Nanorods,” Adv. Funct. Mater.20(7), 1161–1165 (2010). [CrossRef]
  8. J.-P. Richters, T. Voss, D. S. Kim, R. Scholz, and M. Zacharias, “Enhanced surface-excitonic emission in ZnO/Al2O3 core-shell nanowires,” Nanotechnology19(30), 305202 (2008). [CrossRef] [PubMed]
  9. K. W. Liu, R. Chen, G. Z. Xing, T. Wu, and H. D. Sun, “Photoluminescence characteristics of high quality ZnO nanowires and its enhancement by polymer covering,” Appl. Phys. Lett.96(2), 023111 (2010). [CrossRef]
  10. J.-P. Richters, T. Voss, L. Wischmeier, I. Rűckmann, and J. Gutowski, “Influence of polymer coating on the low-temperature photoluminescence properties of ZnO nanowires,” Appl. Phys. Lett.92(1), 011103 (2008). [CrossRef]
  11. C. Y. Chen, C. A. Lin, M. J. Chen, G. R. Lin, and J. H. He, “ZnO/Al2O3 core-shell nanorod arrays: growth, structural characterization, and luminescent properties,” Nanotechnology20(18), 185605 (2009). [CrossRef] [PubMed]
  12. C. Y. Liu, H. Y. Xu, J. G. Ma, X. H. Li, X. T. Zhang, Y. C. Liu, and R. Mu, “Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shell nanowires,” Appl. Phys. Lett.99(6), 063115 (2011). [CrossRef]
  13. W. Z. Liu, H. Y. Xu, J. G. Ma, C. Y. Liu, Y. X. Liu, and Y. C. Liu, “Effect of oxygen-related surface adsorption on the efficiency and stability of ZnO nanorod array ultraviolet light-emitting diodes,” Appl. Phys. Lett.100(20), 203101 (2012). [CrossRef]
  14. L. Shi, Y. Xu, S. Hark, Y. Liu, S. Wang, L. Peng, K. Wong, and Q. Li, “Optical and electrical performance of SnO2 capped ZnO nanowire arrays,” Nano Lett.7(12), 3559–3563 (2007). [CrossRef]
  15. B. Yao, L. Feng, C. Cheng, M. M. T. Loy, and N. Wang, “Tailoring the luminescence emission of ZnO nanostructures by hydrothermal post-treatment in water,” Appl. Phys. Lett.96(22), 223105 (2010). [CrossRef]
  16. J. Tauc, Amorphous and Liquid Semiconductors (Springer, 1974).
  17. F. Giorgis, C. F. Pirri, and E. Tresso, “Structural properties of a-Si1−xNx:H films grown by plasma enhanced chemical vapour deposition by SiH4 + NH3 + H2 gas mixtures,” Thin Solid Films307(1–2), 298–305 (1997). [CrossRef]
  18. N. Ohashi, T. Ishigaki, N. Okada, T. Sekiguchi, I. Sakaguchi, and H. Haneda, “Effect of hydrogen doping on ultraviolet emission spectra of various types of ZnO,” Appl. Phys. Lett.80(16), 2869 (2002). [CrossRef]
  19. C.-C. Lin, H.-P. Chen, and S.-Y. Chen, “Synthesis and optoelectronic properties of arrayed p-type ZnO nanorods grown on ZnO film/Si wafer in aqueous solutions,” Chem. Phys. Lett.404(1–3), 30–34 (2005). [CrossRef]
  20. R. Huang, S. G. Xu, W. H. Guo, L. Wang, J. Song, T.-W. Ng, J. Huang, S.-T. Lee, S. W. Du, and N. Wang, “Nitrogen deep accepters in ZnO nanowires induced by ammonia plasma,” Appl. Phys. Lett.99(14), 143112 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited