OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 5897–5909

A refractive index sensor design based on grating-assisted coupling between a strip waveguide and a slot waveguide

Qing Liu, Jack Sheng Kee, and Mi Kyoung Park  »View Author Affiliations

Optics Express, Vol. 21, Issue 5, pp. 5897-5909 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1634 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we present a design of a refractive index sensor based on grating-assisted light coupling between a strip waveguide and a slot waveguide. The slot waveguide serves as the sensing waveguide while the strip waveguide is used for light launching and detection. The wavelength at which the light is coupled from the strip waveguide to the slot waveguide serves as a measure of the refractive index of the external medium. The sensitivity of the sensor is ~1.46 × 103 nm/RIU (refractive index unit) and can be almost doubled by isolating the strip waveguide from the external medium. The effects of the slot-waveguide parameters on the sensitivity have also been investigated. In particular, it is found that the sensor can achieve extraordinarily high sensitivity (on the order of 105 nm/RIU) when the group indices of two waveguides are close. The temperature dependence of the sensor is also investigated and a sensor with very low temperature dependence can be achieved with a polymer isolation layer.

© 2013 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.6010) Integrated optics : Sensors
(230.7390) Optical devices : Waveguides, planar

ToC Category:
Integrated Optics

Original Manuscript: October 18, 2012
Revised Manuscript: November 20, 2012
Manuscript Accepted: November 20, 2012
Published: March 4, 2013

Qing Liu, Jack Sheng Kee, and Mi Kyoung Park, "A refractive index sensor design based on grating-assisted coupling between a strip waveguide and a slot waveguide," Opt. Express 21, 5897-5909 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta620(1-2), 8–26 (2008). [CrossRef] [PubMed]
  2. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express15(12), 7610–7615 (2007). [CrossRef] [PubMed]
  3. Z. Yu and S. Fan, “Extraordinarily high spectral sensitivity in refractive index sensors using multiple optical modes,” Opt. Express19(11), 10029–10040 (2011). [CrossRef] [PubMed]
  4. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett.29(11), 1209–1211 (2004). [CrossRef] [PubMed]
  5. C. A. Barrios, “Optical slot-waveguidde based biochemical sensors,” Sensors (Basel Switzerland)9(6), 4751–4765 (2009). [CrossRef]
  6. C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, “Slot-waveguide biochemical sensor,” Opt. Lett.32(21), 3080–3082 (2007). [CrossRef] [PubMed]
  7. C. A. Barrios, M. J. Bañuls, V. González-Pedro, K. B. Gylfason, B. Sánchez, A. Griol, A. Maquieira, H. Sohlström, M. Holgado, and R. Casquel, “Label-free optical biosensing with slot-waveguides,” Opt. Lett.33(7), 708–710 (2008). [CrossRef] [PubMed]
  8. T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J.1(3), 197–204 (2009). [CrossRef]
  9. X. Tu, J. F. Song, T.-Y. Liow, M. K. Park, J. Q. Yiying, J. S. Kee, M. B. Yu, and G. Q. Lo, “Thermal independent silicon-nitride slot waveguide biosensor with high sensitivity,” Opt. Express20(3), 2640–2648 (2012). [CrossRef] [PubMed]
  10. A. S. Jugessur, M. Yagnyukova, J. Dou, and J. S. Aitchison, “Bragg-grating air-slot optical waveguide for label-free sensing,” Proc. SPIE8231, 82310N (2012). [CrossRef]
  11. V. M. N. Passaro, F. Dell’olio, C. Ciminelli, and M. N. Armenise, “Efficient chemical sensing by coupled slot SOI waveguides,” Sensors (Basel)9(2), 1012–1032 (2009). [CrossRef] [PubMed]
  12. J. M. Senior and S. D. Cusworth, “Devices for wavelength multiplexing and demultiplexing,” Proc. Inst. Electr. Eng.136, 183–202 (1989).
  13. L. L. Buhl, R. C. Alferness, U. Koren, B. I. Miller, M. G. Young, T. L. Koch, C. A. Burrus, and G. Raybon, “Grating assisted vertical coupler/filter for extended tuning range,” Electron. Lett.29(1), 81–82 (1993). [CrossRef]
  14. G. Z. Masanovic, V. M. N. Passaro, and G. T. Reed, “Dual grating-assisted directional coupling between fibers and thin semiconductor waveguides,” IEEE Photon. Technol. Lett.15(10), 1395–1397 (2003). [CrossRef]
  15. K. Cottier, M. Wiki, G. Voirin, H. Gao, and R. E. Kunz, “Label-free highly sensitive detection of (small) molecules by wavelength interrogation of integrated optical chips,” Sens. Actuators B Chem.91(1-3), 241–251 (2003). [CrossRef]
  16. M. A. Komatsu, K. Saitoh, and M. Koshiba, “Design of miniaturized silicon wire and slot waveguide polarization splitterbased on a resonant tunneling,” Opt. Express17(21), 19225–19233 (2009). [CrossRef] [PubMed]
  17. D. Dai, Z. Wang, and J. E. Bowers, “Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler,” Opt. Lett.36(13), 2590–2592 (2011). [CrossRef] [PubMed]
  18. D. Marcuse, “Directional coupler made of nonidentical asymmetric slabs. Part II: Garting-assisted couplers,” J. Lightwave Technol.5(2), 268–273 (1987). [CrossRef]
  19. H. Kogelnik, “Theory of optical waveguides,” in Guided-Wave Optoelectronics, T. Tamir, ed. (Springer, 1990).
  20. Q. Liu, K. S. Chiang, and V. Rastogi, “Analysis of corrugated long-period gratings in slab waveguides and their polarization dependence,” J. Lightwave Technol.21(12), 3399–3405 (2003). [CrossRef]
  21. F. Dell’Olio and V. M. N. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express15(8), 4977–4993 (2007). [CrossRef] [PubMed]
  22. A. Yalçin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Ünlü, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron.12(1), 148–155 (2006). [CrossRef]
  23. X. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long period fiber gratings,” J. Lightwave Technol.20(2), 255–266 (2002). [CrossRef]
  24. X. Shu, X. Zhu, S. Jiang, W. Shi, and D. Huang, “High sensitivity of dual resonant peaks of long-period fibre grating to surrounding refractive index changes,” Electron. Lett.35(18), 1580–1581 (1999). [CrossRef]
  25. S. M. Topliss, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Optical fibre long period grating based selective vapour sensing of volatile organic compounds,” Sens. Actuators B Chem.143(2), 629–634 (2010). [CrossRef]
  26. C. B. Kim and C. B. Su, “Measurement of the refractive index of liquids at 1.3 and 1.5 micron using a fibre optic Fresnel ratio meter,” Meas. Sci. Technol.15(9), 1683–1686 (2004). [CrossRef]
  27. R. Amatya, C. W. Holzwarth, H. I. Smith, and R. J. Ram, “Efficient thermal tuning for second-order silicon nitride microring resonators,” in Proceedings of IEEE Conference on Photonics in Switching (Institute of Electrical and Electronics Engineers, San Francisco, 2007), pp. 149–150.
  28. J.-M. Lee, D.-J. Kim, G.-H. Kim, O.-K. Kwon, K.-J. Kim, and G. Kim, “Controlling temperature dependence of silicon waveguide using slot structure,” Opt. Express16(3), 1645–1652 (2008). [CrossRef] [PubMed]
  29. C. R. Doerr, L. Chen, Y.-K. Chen, and L. L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett.22(19), 1461–1463 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited