OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 5910–5923

Efficient analysis of mode profiles in elliptical microcavity using dynamic-thermal electron-quantum medium FDTD method

E. H. Khoo, I. Ahmed, R. S. M. Goh, K. H. Lee, T. G. G. Hung, and E. P. Li  »View Author Affiliations

Optics Express, Vol. 21, Issue 5, pp. 5910-5923 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1344 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The dynamic-thermal electron-quantum medium finite-difference time-domain (DTEQM-FDTD) method is used for efficient analysis of mode profile in elliptical microcavity. The resonance peak of the elliptical microcavity is studied by varying the length ratio. It is observed that at some length ratios, cavity mode is excited instead of whispering gallery mode. This depicts that mode profiles are length ratio dependent. Through the implementation of the DTEQM-FDTD on graphic processing unit (GPU), the simulation time is reduced by 300 times as compared to the CPU. This leads to an efficient optimization approach to design microcavity lasers for wide range of applications in photonic integrated circuits.

© 2013 OSA

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(200.4960) Optics in computing : Parallel processing
(140.3948) Lasers and laser optics : Microcavity devices
(250.5960) Optoelectronics : Semiconductor lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: August 31, 2012
Revised Manuscript: October 25, 2012
Manuscript Accepted: October 25, 2012
Published: March 4, 2013

E. H. Khoo, I. Ahmed, R. S. M. Goh, K. H. Lee, T. G. G. Hung, and E. P. Li, "Efficient analysis of mode profiles in elliptical microcavity using dynamic-thermal electron-quantum medium FDTD method," Opt. Express 21, 5910-5923 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Rezac and A. Rosenberger, “Locking a microsphere whispering-gallery mode to a laser,” Opt. Express8(11), 605–610 (2001). [CrossRef] [PubMed]
  2. M. Ohtsu, Principles of Nanophotonics (CRC Press/Taylor & Francis NW, 2008).
  3. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk laser,” Appl. Phys. Lett.60(3), 289–291 (1992). [CrossRef]
  4. R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, “Threshold characteristics of semiconductor microdisk laser,” Appl. Phys. Lett.63(10), 1310–1312 (1993). [CrossRef]
  5. J. D. Jackson, Classical Electrodynamic (Wiley Press, 1999).
  6. S. M. Hsu and H. C. Chang, “Full-vectorial finite element method based eigenvalue algorithm for the analysis of 2D photonic crystals with arbitrary 3D anisotropy,” Opt. Express15(24), 15797–15811 (2007). [CrossRef] [PubMed]
  7. Z. H. Liu, E. K. Chua, and K. Y. See, “Accurate and efficient evaluation of method of moments matrix based on a generalized analytical approach,” PIERS94, 367–382 (2009). [CrossRef]
  8. G. Strang and G. Fix, An Analysis of The Finite Element Method (Prentice Hall Press, 1973).
  9. I. Ahmed, E. H. Khoo, and E. P. Li, “Development of the CPML for three-dimensional unconditionally stable LOD-FDTD method,” IEEE Trans. Antenn. Propag.58(3), 832–837 (2010). [CrossRef]
  10. F. Zheng, Z. Chen, and J. Zhang, “A finite-difference time-domain method without the Courant stability conditions,” IEEE Microw. Guided Wave Lett.9(11), 441–443 (1999). [CrossRef]
  11. I. Ahmed, E. K. Chua, E. P. Li, and Z. Chen, “Development of the three dimensional unconditionally stable LOD-FDTD method,” IEEE Trans. Antenn. Propag.56(11), 3596–3600 (2008). [CrossRef]
  12. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag.14(3), 302–307 (1966). [CrossRef]
  13. S. E. Krakiwsky, L. E. Turner, and M. M. Okoniewski, “Acceleration of finite different time domain (FDTD) using graphics processor units (GPU),” IEEE Int. Microw. Sym. Digest2, 1033–1036 (2004).
  14. S. Adam, J. Payne, and R. Boppana, “Finite different time domain (FDTD) simulations using graphics processor,” Proceedings of the Department of Defense High Performance Computing Modernization Program Users Group Conference, 334–338 (2007).
  15. R. Sypek, A. Dziekonski, and M. Mrozowski, “How to render FDTD computations more effective using a graphics accelerator,” IEEE Trans. Magn.45(3), 1324–1327 (2009). [CrossRef]
  16. K. H. Lee, I. Ahmed, R. S. M. Goh, E. H. Khoo, E. P. Li, and T. G. G. Hung, “Implementation of the FDTD method based on Lorentz-Drude model on GPU for plasmonics applications,” PIERS116, 441–456 (2011).
  17. Y. Huang and S. T. Ho, “Computational model of solid-state, molecular, or atomic media for FDTD simulation based on a multi-level multi-electron system governed by Pauli exclusion and Fermi-Dirac thermalization with application to semiconductor photonics,” Opt. Express14(8), 3569–3587 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-8-3569 . [CrossRef] [PubMed]
  18. E. H. Khoo, S. T. Ho, I. Ahmed, E. P. Li, and Y. Huang, “Light energy extraction from the minor surface arc of an electrically pumped elliptical microcavity laser,” IEEE J. Quantum Electron.46(1), 128–136 (2010). [CrossRef]
  19. R. K. Chang and A. J. Campillo, Optical processes in Microcavities, Advanced series in Applied Physics (World Scientific, Singapore 1996).
  20. E. H. Khoo, I. Ahmed, and E. P. Li, “Enhancement of light energy extraction from elliptical microcavity using external magnetic field for switching applications,” Appl. Phys. Lett.95(12), 121104 (2009). [CrossRef]
  21. I. Ahmed, E. H. Khoo, O. Kurniawan, and E. P. Li, “Modeling and simulation of plasmonic with FDTD method by using solid state and Lorentz -Drude dispersion model,” J. Opt. Soc. Am. B28(3), 352–359 (2011). [CrossRef]
  22. E. H. Khoo, I. Ahmed, and E. P. Li, “Investigation of light energy extraction efficiency using surface plasmonics in electrically pumped semiconductor microcavity,” Proc. SPIE7764, 7764B (2010).
  23. O. Kurniawan, I. Ahmed, and E. P. Li, “Generation of surface plasmon polariton using plasmonic resonant cavity based on microdisk laser,” IEEE Photon. J.3, 344–352 (2011).
  24. R. Shams and P. Sadeghi, “On optimization of finite-difference time-domain (FDTD) computation on heterogeneous and GPU clusters,” J. Parallel Distrib. Comput.71(4), 584–593 (2011). [CrossRef]
  25. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics1(8), 449–458 (2007). [CrossRef]
  26. W. Fang, J. Y. Xu, A. Yamilov, H. Cao, Y. Ma, S. T. Ho, and G. S. Solomon, “Large enhancement of spontaneous emission rates of InAs quantum dots in GaAs microdisks,” Opt. Lett.27(11), 948–950 (2002). [CrossRef] [PubMed]
  27. Y. Kogami, Y. Tomabechi, and K. Matsumura, “Resonance characteristic of whispering-gallery mode in an elliptic disk resonator,” IEEE Trans. Microw. Theory Tech.44(3), 473–475 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited