OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 5924–5930

Characterization of light absorption in thin-film silicon with periodic nanohole arrays

Nor Afifah Yahaya, Noboru Yamada, Yukio Kotaki, and Tadachika Nakayama  »View Author Affiliations

Optics Express, Vol. 21, Issue 5, pp. 5924-5930 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2013 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Light absorption in thin-film nanostructured monocrystalline silicon (c-Si) in a glass/Ag(0.2 µm)/c-Si(1 µm) stack is characterized using simulations and measurements. Nanohole (NH) arrays designed for a practical thin-film solar cell configuration experimentally exhibit a significant improvement of the light absorption in the 1-µm ultrathin c-Si layer that exceeds the theoretical Yablonovitch limit in the long wavelength range. Fabricated square-lattice and hexagonal NH arrays give relative improvements of 65 and 70%, respectively, in the total absorption compared to a nonpatterned stack. The effect of an indium-tin-oxide (ITO) coating is also simulated, and an empty NH configuration gives the lowest ITO parasitic absorption.

© 2013 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(040.6040) Detectors : Silicon
(160.4760) Materials : Optical properties
(310.0310) Thin films : Thin films
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Solar Energy

Original Manuscript: October 31, 2012
Revised Manuscript: February 13, 2013
Manuscript Accepted: February 21, 2013
Published: March 4, 2013

Nor Afifah Yahaya, Noboru Yamada, Yukio Kotaki, and Tadachika Nakayama, "Characterization of light absorption in thin-film silicon with periodic nanohole arrays," Opt. Express 21, 5924-5930 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. K. Ng and S. M. Sze, Physics of Semiconductor Devices (John Wiley & Sons, 2007).
  2. M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes - Architectures for organic solar cells,” Thin Solid Films451–452, 619–623 (2004). [CrossRef]
  3. D. Zhou and R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys.103(9), 093102 (2008). [CrossRef]
  4. F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled, Ag nanoparticles,” Prog. Photovolt. Res. Appl.18(7), 500–504 (2010). [CrossRef]
  5. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A.107(41), 17491–17496 (2010). [CrossRef] [PubMed]
  6. S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett.10(11), 4692–4696 (2010). [CrossRef] [PubMed]
  7. F. Wang, H. Yu, J. Li, S. Wong, X. W. Sun, X. Wang, and H. Zheng, “Design guideline of high efficiency crystalline Si thin film solar cell with nanohole array textured surface,” J. Appl. Phys.109(8), 084306 (2011). [CrossRef]
  8. K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett.12(3), 1616–1619 (2012). [CrossRef] [PubMed]
  9. S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett.10(3), 1012–1015 (2010). [CrossRef] [PubMed]
  10. C. M. Sotomayor Torres, S. Zankovych, J. Seekamp, A. P. Kam, C. Clavijo Cedeño, T. Hoffmann, J. Ahopelto, F. Reuther, K. Pfeiffer, G. Bleidiessel, G. Gruetzner, M. V. Maximov, and B. Heidari, “Nanoimprint lithography: An alternative nanofabrication approach,” Mater. Sci. Eng. C23(1-2), 23–31 (2003). [CrossRef]
  11. W. Wu, D. Dey, O. G. Memis, A. Katsnelson, and H. Mohseni, “Fabrication of large area periodic nanostructures using nanosphere photolithography,” Nanoscale Res. Lett.3(10), 351–354 (2008). [CrossRef]
  12. S. L. Cheng, Y. H. Lin, S. W. Lee, T. Lee, H. Chen, J. C. Hu, and L. T. Chen, “Fabrication of size-tunable, periodic Si nanohole arrays by plasma modified nanosphere lithography and anisotropic wet etching,” Appl. Surf. Sci.263, 430–435 (2012). [CrossRef]
  13. K. Q. Peng, X. Wang, L. Li, X. L. Wu, and S. T. Lee, “High-performance silicon nanohole solar cells,” J. Am. Chem. Soc.132(20), 6872–6873 (2010). [CrossRef] [PubMed]
  14. T. G. Chen, P. Yu, S. W. Chen, F. Y. Chang, B. Y. Huang, Y. C. Cheng, J. C. Hsiao, C. K. Li, and Y. R. Wu, “Characteristics of large-scale nanohole arrays for thin-silicon photovoltaics,” Prog. Photovolt. Res. Appl.n/a (2012), doi:. [CrossRef]
  15. A. Boukai, P. Haney, A. Katzenmeyer, G. M. Gallatin, A. A. Talin, and P. Yang, “Efficiency enhancement of copper contaminated radial p–n junction solar cells,” Chem. Phys. Lett.501(4-6), 153–158 (2011). [CrossRef]
  16. N. A. Yahaya, N. Yamada, and T. Nakayama, “Light trapping potential of hexagonal array silicon nanohole structure for solar cell application,” Adv. Mater. Res.512–515, 90–96 (2012). [CrossRef]
  17. X. Meng, V. Depauw, G. Gomard, O. El Daif, C. Trompoukis, E. Drouard, C. Jamois, A. Fave, F. Dross, I. Gordon, and C. Seassal, “Design, fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells,” Opt. Express20(S4Suppl 4), A465–A475 (2012). [CrossRef] [PubMed]
  18. C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire and nanohole arrays for photovoltaic applications,” Proc. SPIE7772, 77721G, 77721G-11 (2010). [CrossRef]
  19. S. Basu Mallick, M. Agrawal, A. Wangperawong, E. S. Barnard, K. K. Singh, R. J. Visser, M. L. Brongersma, and P. Peumans, “Ultrathin crystalline-silicon solar cells with embedded photonic crystals,” Appl. Phys. Lett.100(5), 053113 (2012). [CrossRef]
  20. K. Sopian, N. Asim, N. Amin, and S. H. Zaidi, “Enhancement of optical absorption in thin-film silicon solar cells in silicon-on-insulator (SOI) configuration,” Eur. J. Sci. Res.24, 358–364 (2008).
  21. S. B. Mallick, M. Agrawal, and P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express18(6), 5691–5706 (2010). [CrossRef] [PubMed]
  22. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev.4(6), 795–808 (2010). [CrossRef]
  23. A. D. Rakic, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt.37(22), 5271–5283 (1998). [CrossRef] [PubMed]
  24. E. D. Palik, Handbook of Optical Constant of Solids (Academic Press Limited, 1985).
  25. R. Kapadia, Z. Fan, K. Takei, and A. Javey, “Nanopillar photovoltaics: materials, processes, and devices,” Nano Energy1(1), 132–144 (2012). [CrossRef]
  26. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am.72(7), 899–907 (1982). [CrossRef]
  27. G. Gomard, E. Drouard, X. Letartre, X. Meng, A. Kaminski, A. Fave, M. Lemiti, E. Garcia-Caurel, and C. Seassal, “Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells,” J. Appl. Phys.108(12), 123102 (2010). [CrossRef]
  28. H. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgür, and H. Morkoç, “Transparent conducting oxides for electrode applicatons in light emitting and absorbing devices,” Superlattices Microstruct.48(5), 458–484 (2010). [CrossRef]
  29. S.-Y. Lien, “Characterization and optimization of ITO thin films for application in heterojunction silicon solar cells,” Thin Solid Films518(21), S10–S13 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited