OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 5957–5967

The phase shift of light scattering at sub-wavelength dielectric structures

Yiling Yu and Linyou Cao  »View Author Affiliations

Optics Express, Vol. 21, Issue 5, pp. 5957-5967 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1049 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a new theoretical analysis for the light scattering at sub-wavelength dielectric structures. This analysis can provide new intuitive insights into the phase shift of the scattered light that cannot be obtained from the existing approaches. Unlike the traditional analytical (e.g. Mie formalism) and numerical (e.g. FDTD) approaches, which simulate light scattering by rigorously matching electromagnetic fields at boundaries, we consider sub-wavelength dielectric structures as leaky resonators and evaluate the light scattering as a coupling process between incident light and leaky modes of the structure. Our analysis indicates that the light scattering is fundamentally dictated by the eigenvalue of the leaky modes. It indicates that the upper limit for the scattering efficiency of a cylindrical cylinder in free space is 4n, where n is the refractive index. It also indicates that the phase shift of the forward scattered light at dielectric structures can only cover half of the phase space [0, 2π], but backward scattering can provide a full phase coverage.

© 2013 OSA

OCIS Codes
(260.5740) Physical optics : Resonance
(160.4236) Materials : Nanomaterials
(290.5825) Scattering : Scattering theory

ToC Category:

Original Manuscript: November 22, 2012
Revised Manuscript: February 18, 2013
Manuscript Accepted: February 21, 2013
Published: March 4, 2013

Yiling Yu and Linyou Cao, "The phase shift of light scattering at sub-wavelength dielectric structures," Opt. Express 21, 5957-5967 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. W. Barber and R. K. Chang, eds., Optical Effects Associated with Small Particles (World Scientific, 1988).
  2. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  3. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  4. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998). [CrossRef]
  5. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009). [CrossRef] [PubMed]
  6. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008). [CrossRef] [PubMed]
  7. S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics3(7), 388–394 (2009). [CrossRef]
  8. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005). [CrossRef] [PubMed]
  9. Z. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686–1686 (2007). [CrossRef] [PubMed]
  10. A. Alù and N. Engheta, “Cloaking a Sensor,” Phys. Rev. Lett.102(23), 233901 (2009). [CrossRef] [PubMed]
  11. W. S. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics1(4), 224–227 (2007). [CrossRef]
  12. Y. M. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev.40(5), 2494–2507 (2011). [CrossRef] [PubMed]
  13. L. Y. Cao, J. S. White, J. S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater.8(8), 643–647 (2009). [CrossRef] [PubMed]
  14. Y. Yu and L. Y. Cao, “Coupled leaky mode theory for light absorption in 2D, 1D, and 0D semiconductor nanostructures,” Opt. Express20(13), 13847–13856 (2012). [CrossRef] [PubMed]
  15. Y. Yu, V. E. Ferry, A. P. Alivisatos, and L. Y. Cao, “Dielectric core-shell optical antennas for strong solar absorption enhancement,” Nano Lett.12(7), 3674–3681 (2012). [CrossRef] [PubMed]
  16. O. L. Muskens, S. L. Diedenhofen, B. C. Kaas, R. E. Algra, E. P. A. M. Bakkers, J. G. Rivas, and A. Lagendijk, “Large photonic strength of highly tunable resonant nanowire materials,” Nano Lett.9(3), 930–934 (2009). [CrossRef] [PubMed]
  17. J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, 1998).
  18. R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljacic, “Coupled-mode theory for general free-space resonant scattering of waves,” Phys. Rev. A75(5), 053801 (2007). [CrossRef]
  19. Z. C. Ruan and S. H. Fan, “Temporal coupled-mode theory for Fano resonance in light scattering by a single obstacle,” J. Phys. Chem. C114(16), 7324–7329 (2010). [CrossRef]
  20. Z. Ruan and S. Fan, “Super-scattering of light from subwavelength nano-structures,” Phys. Rev. Lett.105(1), 013901 (2010). [CrossRef] [PubMed]
  21. H. A. Haus, Wave and Fields in Optoelectronics (Prentice-Hall, 1984).
  22. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett.36, 321–322 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited