OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 5968–5973

Robustness of Lorenz-Mie microscopy against defects in illumination

Henrique W. Moyses, Bhaskar J. Krishnatreya, and David G. Grier  »View Author Affiliations


Optics Express, Vol. 21, Issue 5, pp. 5968-5973 (2013)
http://dx.doi.org/10.1364/OE.21.005968


View Full Text Article

Enhanced HTML    Acrobat PDF (862 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Lorenz-Mie analysis of colloidal spheres’ holograms has been reported to achieve remarkable resolution not only for the spheres’ three-dimensional positions, but also for their sizes and refractive indexes. Here we apply numerical modeling to establish limits on the instrumental resolution for tracking and characterizing individual colloidal spheres with Lorenz-Mie microscopy.

© 2013 OSA

OCIS Codes
(090.1760) Holography : Computer holography
(180.6900) Microscopy : Three-dimensional microscopy
(290.5850) Scattering : Scattering, particles

ToC Category:
Microscopy

History
Original Manuscript: November 21, 2012
Manuscript Accepted: February 22, 2013
Published: March 4, 2013

Virtual Issues
Vol. 8, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Henrique W. Moyses, Bhaskar J. Krishnatreya, and David G. Grier, "Robustness of Lorenz-Mie microscopy against defects in illumination," Opt. Express 21, 5968-5973 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-5-5968


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt.45, 3893–3901 (2006). [CrossRef] [PubMed]
  2. S.-H. Lee and D. G. Grier, “Holographic microscopy of holographically trapped three-dimensional structures,” Opt. Express15, 1505–1512 (2007). [CrossRef] [PubMed]
  3. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Interscience, 1983).
  4. S.-H. Lee, Y. Roichman, G.-R. Yi, S.-H. Kim, S.-M. Yang, A. van Blaaderen, P. van Oostrum, and D. G. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express15, 18275–18282 (2007). [CrossRef] [PubMed]
  5. T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to speciment shape compensation,” Appl. Opt.45, 851–863 (2006). [CrossRef] [PubMed]
  6. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt.45, 836–850 (2006). [CrossRef] [PubMed]
  7. D. G. Abdelsalam, B. J. Baek, and D. Kim, “Influence of the collimation of the reference wave in off-axis digital holography,” Optik123, 1469–1473 (2012). [CrossRef]
  8. U. Schnars and W. P. O. Jüptner, “Digital recording and reconstruction of holograms,” Meas. Sci. Technol.13, R85–R101 (2002). [CrossRef]
  9. J. H. Milgram and W. C. Li, “Computational reconstruction of images from holograms,” Appl. Opt.41, 853–864 (2002). [CrossRef] [PubMed]
  10. B. J. Thompson, “Holographic particle sizing techniques,” J. Phys. E7, 781–788 (1974). [CrossRef]
  11. S. Soontaranon, J. Widjaja, and T. Asakura, “Improved holographic particle sizing by using absolute values of the wavelet transform,” Opt. Commun.240, 253–260 (2004). [CrossRef]
  12. S. L. Pu, D. Allano, B. Patte-Rouland, M. Malek, D. Lebrun, and K. F. Cen, “Particle field characterization by digital in-line holography: 3D location and sizing,” Exp. Fluids39, 1–9 (2005). [CrossRef]
  13. F. C. Cheong, S. Duarte, S.-H. Lee, and D. G. Grier, “Holographic microrheology of polysaccharides from Streptococcus mutans biofilms,” Rheol. Acta48, 109–115 (2009). [CrossRef]
  14. F. C. Cheong, B. Sun, R. Dreyfus, J. Amato-Grill, K. Xiao, L. Dixon, and D. G. Grier, “Flow visualization and flow cytometry with holographic video microscopy,” Opt. Express17, 13071–13079 (2009). [CrossRef] [PubMed]
  15. F. C. Cheong, B. J. Krishnatreya, and D. G. Grier, “Strategies for three-dimensional particle tracking with holographic video microscopy,” Opt. Express18, 13563–13573 (2010). [CrossRef] [PubMed]
  16. L. Dixon, F. C. Cheong, and D. G. Grier, “Holographic particle-streak velocimetry,” Opt. Express19, 4393–4398 (2011). [CrossRef] [PubMed]
  17. F. C. Cheong, K. Xiao, D. J. Pine, and D. G. Grier, “Holographic characterization of individual colloidal spheres’ porosities,” Soft Matter7, 6816–6819 (2011). [CrossRef]
  18. H. Shpaisman, B. J. Krishnatreya, and D. G. Grier, “Holographic microrefractometer,” Appl. Phys. Lett.101, 091102 (2012). [CrossRef]
  19. J. A. Lock and G. Gouesbet, “Generalized Lorenz-Mie theory and applications,” J. Quant. Spectrosc. Radiat. Transf.110, 800–807 (2009). [CrossRef]
  20. G. Gouesbet, “T-matrix fomulationand generalized Lorenz-Mie theories in spherical coordinates,” Opt. Commun.283, 517–521 (2010). [CrossRef]
  21. Y. Roichman, B. Sun, A. Stolarski, and D. G. Grier, “Influence of non-conservative optical forces on the dynamics of optically trapped colloidal spheres: The fountain of probability,” Phys. Rev. Lett.101, 128301 (2008). [CrossRef] [PubMed]
  22. B. Sun, J. Lin, E. Darby, A. Y. Grosberg, and D. G. Grier, “Brownian vortexes,” Phys. Rev. E80, 010401(R) (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited