OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 5988–5997

Quantum state engineering with nitrogen-vacancy centers coupled to low-Q microresonator

Liu-Yong Cheng, Hong-Fu Wang, Shou Zhang, and Kyu-Hwang Yeon  »View Author Affiliations

Optics Express, Vol. 21, Issue 5, pp. 5988-5997 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1275 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate efficient schemes of deterministic entanglement generation and quantum state transfer (QST) with the nitrogen-vacancy (NV) centers in diamond confined in separated microtoroidal resonators via single-photon input-output process. Assisted by the polarization of input photon pulse and the electron spin state of NV center, high fidelity NV center entangled states and photonic entangled states can be generated, respectively. The analyses of experimental feasibility show that our schemes work well with low quality resonators and weak coupling between qubits, which may be beneficial for exploring large-scale quantum information processing with diamond-based solid-state devices.

© 2013 OSA

OCIS Codes
(230.5750) Optical devices : Resonators
(270.5580) Quantum optics : Quantum electrodynamics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: December 6, 2012
Revised Manuscript: January 16, 2013
Manuscript Accepted: February 14, 2013
Published: March 4, 2013

Liu-Yong Cheng, Hong-Fu Wang, Shou Zhang, and Kyu-Hwang Yeon, "Quantum state engineering with nitrogen-vacancy centers coupled to low-Q microresonator," Opt. Express 21, 5988-5997 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett.67, 661–663 (1991). [CrossRef] [PubMed]
  2. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett.70, 1895–1899 (1993). [CrossRef] [PubMed]
  3. S.-B. Zheng and G.-C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett.85, 2392–2395 (2000). [CrossRef] [PubMed]
  4. G. Vidal, “Efficient Classical Simulation of Slightly Entangled Quantum Computations,” Phys. Rev. Lett.91, 147902 (2003). [CrossRef] [PubMed]
  5. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys.81, 865–942 (2009). [CrossRef]
  6. C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland, and C. Monroe, “Experimental entanglement of four particles,” Nature (London)404, 256–259 (2000). [CrossRef]
  7. X.-B. Zou, K. Pahlke, and W. Mathis, “Generation of an entangled state of two three-level atoms in cavity QED,” Phys. Rev. A67, 044301 (2003). [CrossRef]
  8. A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett.89, 240401 (2002). [CrossRef] [PubMed]
  9. H.-F. Wang and Shou Zhang, “Linear optical generation of multipartite entanglement with conventional photon detectors,” Phys. Rev. A79, 042336 (2009). [CrossRef]
  10. X.-Q. Shao, L. Chen, S. Zhang, Y.-F. Zhao, and K.-H. Yeon, “Deterministic generation of arbitrary multi-atom symmetric Dicke states by a combination of quantum Zeno dynamics and adiabatic passage,” Europhys. Lett.90, 50003 (2010). [CrossRef]
  11. J. A. Sauer, K. M. Fortier, M. S. Chang, C. D. Hamley, and M. S. Chapman, “Cavity QED with optically transported atoms,” Phys. Rev. A69, 051804(R) (2004). [CrossRef]
  12. H. Walther, B. T. H. Varcoe, B. G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys.69, 1325–1382 (2006). [CrossRef]
  13. B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. I. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science319, 1062–1065 (2008). [CrossRef] [PubMed]
  14. Y. S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett.6, 2075–2079 (2006). [CrossRef] [PubMed]
  15. M. Larsson, K. N. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett.9, 1447–1450 (2009). [CrossRef] [PubMed]
  16. P. E. Barclay, K.-M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett.95, 191115 (2009).
  17. R. J. Barbour, K. N. Dinyari, and H. Wang, “A composite microcavity of diamond nanopillar and deformed silica microsphere with enhanced evanescent decay length,” Opt. Express18, 18968–18974 (2010). [CrossRef] [PubMed]
  18. F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett.93, 130501 (2004). [CrossRef] [PubMed]
  19. T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys.2, 408–413 (2006). [CrossRef]
  20. J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett.97, 141108 (2010). [CrossRef]
  21. M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science316, 1312–1316 (2007). [CrossRef]
  22. W.-L. Yang, Z.-Q. Yin, Z.-Y. Xu, M. Feng, and J.-F. Du, “One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity,” Appl. Phys. Lett.96, 241113 (2010). [CrossRef]
  23. E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature (London)466, 730–734 (2010). [CrossRef]
  24. P.-B. Li, S.-Y. Gao, and F.-L. Li, “Quantum-information transfer with nitrogen-vacancy centers coupled to a whispering-gallery microresonator,” Phys. Rev. A83, 054306 (2011). [CrossRef]
  25. Q. Chen, W.-L. Yang, M. Feng, and J.-F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A83, 054305 (2011). [CrossRef]
  26. A. Zheng, J. Li, R. Yu, X.-Y. Lü, and Y. Wu, “Generation of Greenberger-Horne-Zeilinger state of distant diamond nitrogen-vacancy centers via nanocavity input-output process,” Opt. Express20, 16902–16912 (2012). [CrossRef]
  27. P. E. Barclay, K.-M. Fu, C. Santori, and R. G. Beausoleil, “Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers” Opt. Express17, 9588–9601 (2009). [CrossRef] [PubMed]
  28. A. Young, C. Y. Hu, L. Marseglia, J. P. Harrison, J. L. O’Brien, and J. G. Rarity, “Cavity enhanced spin measurement of the ground state spin of an NV center in diamond,” New J. Phys.11, 013007 (2009). [CrossRef]
  29. B. B. Buckley, G. D. Fuchs, L. C. Bassett, and D. D. Awschalom, “Spin-light coherence for single-spin measurement and control in diamond,” Science330, 1212–1215 (2010). [CrossRef] [PubMed]
  30. A. Lenef and S. C. Rand, “Electronic structure of the N-V center in diamond: theory,” Phys. Rev. B53, 13441–13455 (1995). [CrossRef]
  31. C. Santori, D. Fattal, S. M. Spillane, M. Fiorentino, R. G. Beausoleil, A. D. Greentree, P. Olivero, M. Draganski, J. R. Rabeau, P. Reichart, S. Rubanov, D. N. Jamieson, and S. Prawer, “Coherent population trapping in diamond N-V centers at zero magnetic field,” Opt. Express14, 7986–7994 (2006). [CrossRef] [PubMed]
  32. D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag1994).
  33. J.-H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A79, 032303 (2009). [CrossRef]
  34. C. Y. Hu, W. J. Munro, and J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B78, 125318 (2008). [CrossRef]
  35. P. Neumman, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science320, 1326–1329 (2008). [CrossRef]
  36. G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater.8, 383–387 (2009). [CrossRef] [PubMed]
  37. M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys.3, 253–255 (2007). [CrossRef]
  38. A. J. Shields, “Semiconductor quantum light sources,” Nat. Photon.1215–223 (2007). [CrossRef]
  39. K. Koshino and Y. Matsuzaki, “Entangling homogeneously broadened matter qubits in the weak-coupling cavity-QED regime,” Phys. Rev. A86, 020305(R) (2012). [CrossRef]
  40. R. Hanson, O. Gywat, and D. D. Awschalom, “Room-temperature manipulation and decoherence of a single spin in diamond,” Phys. Rev. B74, 161203(R) (2006). [CrossRef]
  41. P. Neumann, R. Kolesov, B. Naydenov, J. Beck, F. Rempp, M. Steiner, V. Jacques, G. Balasubramanian, M. L. Markham, D. J. Twitchen, S. Pezzagna, J. Meijer, J. Twamley, F. Jelezko, and J. Wrachtrup, “Quantum register based on coupled electron spins in a room-temperature solid,” Nat. Phys.6, 249–253 (2010). [CrossRef]
  42. F. Shi, X. Rong, N. Xu, Y. Wang, J. Wu, B. Chong, X. Peng, J. Kniepert, Rolf-Simon Schoenfeld, W. Harneit, M. Feng, and J. Du, “Room-Temperature Implementation of the Deutsch-Jozsa Algorithm with a Single Electronic Spin in Diamond,” Phys. Rev. Lett.105, 040504 (2010). [CrossRef] [PubMed]
  43. N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics,” Phys. Rev. B74, 104303 (2006). [CrossRef]
  44. P. Tamarat, N. B. Manson, J. P. Harrison, R. L. McMurtrie, A. Nizovtsev, C. Santori, R. G. Beausoleil, P. Neumann, T. Gaebel, F. Jelezko, P. Hemmer, and J. Wrachtrup, “Spin-flip and spin-conserving optical transitions of the nitrogen-vacancy centre in diamond,” New J. Phys.10, 045004 (2008). [CrossRef]
  45. J. R. Maze, A. Gali, E. Togan, Y. Chu, A. Trifonov, E. Kaxiras, and M. D. Lukin, “Properties of nitrogen-vacancy centers in diamond: the group theoretic approach,” New J. Phys.13, 025025 (2011). [CrossRef]
  46. C. Santori, P. E. Barclay, K.-M. C. Fu, and R. G. Beausoleil, “Vertical distribution of nitrogen-vacancy centers in diamond formed by ion implantation and annealing,” Phys. Rev. B79, 125313 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited