OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 6009–6019

Subwavelength confined terahertz waves on planar waveguides using metallic gratings

Borwen You, Ja-Yu Lu, Wei-Lun Chang, Chin-Ping Yu, Tze-An Liu, and Jin-Long Peng  »View Author Affiliations


Optics Express, Vol. 21, Issue 5, pp. 6009-6019 (2013)
http://dx.doi.org/10.1364/OE.21.006009


View Full Text Article

Enhanced HTML    Acrobat PDF (1407 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A terahertz plasmonic waveguide is experimentally demonstrated using a plastic ribbon waveguide integrated with a diffraction metal grating to approach subwavelength-scaled confinement and long-distance delivery. Appropriately adjusting the metal-thickness and the periodical slit width of a grating greatly improves both guiding ability and field confinement in the hybrid waveguide structure. The measured lateral decay length of the bound terahertz surface waves on the hybrid waveguide can be reduced to less than λ/4 after propagating a waveguide of around 50mm-long in length. The subwavelength-confined field is potentially advantageous to biomolecular sensing or membrane detection because of the long interaction length between the THz field and analytes.

© 2013 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(130.2790) Integrated optics : Guided waves
(240.6690) Optics at surfaces : Surface waves
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Optics at Surfaces

History
Original Manuscript: November 29, 2012
Revised Manuscript: February 5, 2013
Manuscript Accepted: February 22, 2013
Published: March 4, 2013

Virtual Issues
Vol. 8, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Borwen You, Ja-Yu Lu, Wei-Lun Chang, Chin-Ping Yu, Tze-An Liu, and Jin-Long Peng, "Subwavelength confined terahertz waves on planar waveguides using metallic gratings," Opt. Express 21, 6009-6019 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-5-6009


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1(11), 641–648 (2007). [CrossRef]
  2. E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett.7(2), 334–337 (2007). [CrossRef] [PubMed]
  3. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006). [CrossRef] [PubMed]
  4. T. I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett.88(6), 061113 (2006). [CrossRef]
  5. T. I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett.86(16), 161904 (2005). [CrossRef]
  6. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics2(3), 175–179 (2008). [CrossRef]
  7. W. Zhu, A. Agrawal, and A. Nahata, “Planar plasmonic terahertz guided-wave devices,” Opt. Express16(9), 6216–6226 (2008). [CrossRef] [PubMed]
  8. F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt.7(2), S97–S101 (2005). [CrossRef]
  9. C. R. Williams, M. Misra, S. R. Andrews, S. A. Maier, S. C. Palacios, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Dual band terahertz waveguiding on a planar metal surface patterned with annular holes,” Appl. Phys. Lett.96(1), 011101 (2010). [CrossRef]
  10. A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett.34(13), 2063–2065 (2009). [CrossRef] [PubMed]
  11. S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett.97(17), 176805 (2006). [CrossRef] [PubMed]
  12. L. Shen, X. Chen, and T. J. Yang, “Terahertz surface plasmon polaritons on periodically corrugated metal surfaces,” Opt. Express16(5), 3326–3333 (2008). [CrossRef] [PubMed]
  13. D. Martin-Cano, O. Quevedo-Teruel, E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Waveguided spoof surface plasmons with deep-subwavelength lateral confinement,” Opt. Lett.36(23), 4635–4637 (2011). [CrossRef] [PubMed]
  14. A. Hassani and M. Skorobogatiy, “Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors,” J. Opt. Soc. Am. B24(6), 1423–1429 (2007). [CrossRef]
  15. M. Weisser, B. Menges, and S. M. Neher, “Refractive index and thickness determination of monolayers by multi-mode waveguide coupled surface plasmons,” Sens. Actuators B Chem.56(3), 189–197 (1999). [CrossRef]
  16. M. Martl, J. Darmo, K. Unterrainer, and E. Gornik, “Excitation of terahertz surface plasmon polaritons on etched groove gratings,” J. Opt. Soc. Am. B26(3), 554–558 (2009). [CrossRef]
  17. L. S. Mukina, M. M. Nazarov, and A. P. Shkurinov, “Propagation of THz plasmon pulse on corrugated and flat metal surface,” Surf. Sci.600(20), 4771–4776 (2006). [CrossRef]
  18. M. Nazarov, J. L. Coutaz, A. Shkurinov, and F. Garet, “THz surface plasmon jump between two metal edges,” Opt. Commun.277(1), 33–39 (2007). [CrossRef]
  19. G. Gaborit, D. Armand, J. L. Coutaz, M. Nazarov, and A. Shkurinov, “Excitation and focusing of terahertz surface plasmons using a grating coupler with elliptically curved grooves,” Appl. Phys. Lett.94(23), 231108 (2009). [CrossRef]
  20. M. Gong, T. I. Jeon, and D. Grischkowsky, “THz surface wave collapse on coated metal surfaces,” Opt. Express17(19), 17088–17101 (2009). [CrossRef] [PubMed]
  21. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express16(9), 6340–6351 (2008). [CrossRef] [PubMed]
  22. L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett.31(3), 308–310 (2006). [CrossRef] [PubMed]
  23. C. Yeh, F. Shimabukuro, and P. H. Siegel, “Low-loss terahertz ribbon waveguides,” Appl. Opt.44(28), 5937–5946 (2005). [CrossRef] [PubMed]
  24. M. Nagel, F. Richter, P. Haring-Bolívar, and H. Kurz, “A functionalized THz sensor for marker-free DNA analysis,” Phys. Med. Biol.48(22), 3625–3636 (2003). [CrossRef] [PubMed]
  25. A. Hassani and M. Skorobogatiy, “Surface plasmon resonance-like integrated sensor at terahertz frequencies for gaseous analytes,” Opt. Express16(25), 20206–20214 (2008). [CrossRef] [PubMed]
  26. R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys.88(7), 4449–4451 (2000). [CrossRef]
  27. B. You, J. Y. Lu, T. A. Liu, J. L. Peng, and C. L. Pan, “Subwavelength plastic wire terahertz time-domain spectroscopy,” Appl. Phys. Lett.96(5), 051105 (2010). [CrossRef]
  28. J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett.93(25), 256804 (2004). [CrossRef] [PubMed]
  29. S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun.150(1–6), 22–26 (1998). [CrossRef]
  30. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt.22(7), 1099–20 (1983). [CrossRef] [PubMed]
  31. E. S. Lee, D. H. Kang, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, D. S. Kim, and T. I. Jeon, “Bragg reflection of terahertz waves in plasmonic crystals,” Opt. Express17(11), 9212–9218 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited