OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 6028–6044

Optical diagnostics of a gliding arc

Z.W. Sun, J. J. Zhu, Z.S. Li, M. Aldén, F. Leipold, M. Salewski, and Y. Kusano  »View Author Affiliations

Optics Express, Vol. 21, Issue 5, pp. 6028-6044 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (4439 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Dynamic processes in a gliding arc plasma generated between two diverging electrodes in ambient air driven by 31.25 kHz AC voltage were investigated using spatially and temporally resolved optical techniques. The life cycles of the gliding arc were tracked in fast movies using a high-speed camera with framing rates of tens to hundreds of kHz, showing details of ignition, motion, pulsation, short-cutting, and extinction of the plasma column. The ignition of a new discharge occurs before the extinction of the previous discharge. The developed, moving plasma column often short-cuts its current path triggered by Townsend breakdown between the two legs of the gliding arc. The emission from the plasma column is shown to pulsate at a frequency of 62.5 kHz, i.e., twice the frequency of the AC power supply. Optical emission spectra of the plasma radiation show the presence of excited N2, NO and OH radicals generated in the plasma and the dependence of their relative intensities on both the distance relative to the electrodes and the phase of the driving AC power. Planar laser-induced fluorescence of the ground-state OH radicals shows high intensity outside the plasma column rather than in the center suggesting that ground-state OH is not formed in the plasma column but in its vicinity.

© 2013 OSA

OCIS Codes
(300.2140) Spectroscopy : Emission
(300.2530) Spectroscopy : Fluorescence, laser-induced
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(280.5395) Remote sensing and sensors : Plasma diagnostics

ToC Category:

Original Manuscript: December 17, 2012
Revised Manuscript: February 24, 2013
Manuscript Accepted: February 24, 2013
Published: March 4, 2013

Z.W. Sun, J. J. Zhu, Z.S. Li, M. Aldén, F. Leipold, M. Salewski, and Y. Kusano, "Optical diagnostics of a gliding arc," Opt. Express 21, 6028-6044 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Kusano, H. Mortensen, B. Stenum, S. Goutianos, S. Mitra, A. Ghanbari-Siahkali, P. Kingshott, B. F. Sorensen, and H. Bindslev, “Atmospheric pressure plasma treatment of glassy carbon for adhesion improvement,” Int. J. Adhes. Adhes.27(5), 402–408 (2007). [CrossRef]
  2. Y. Kusano, S. V. Singh, A. Bardenshtein, N. Krebs, and N. Rozlosnik, “Plasma surface modification of glass-fibre-reinforced polyester enhanced by ultrasonic irradiation,” J. Adhes. Sci. Technol.24(11-12), 1831–1839 (2010). [CrossRef]
  3. Y. Kusano, K. Norrman, J. Drews, F. Leipold, S. V. Singh, P. Morgen, A. Bardenshtein, and N. Krebs, “Gliding arc surface treatment of glass-fiber-reinforced polyester enhanced by ultrasonic irradiation,” Surf. Coat. Tech.205, S490–S494 (2011). [CrossRef]
  4. W. Sun, M. Uddi, T. Ombrello, S. H. Won, C. Carter, and Y. Ju, “Effects of non-equilibrium plasma discharge on counterflow diffusion flame extinction,” Proc. Combust. Inst.33(2), 3211–3218 (2011). [CrossRef]
  5. W. Sun, M. Uddi, S. H. Won, T. Ombrello, C. Carter, and Y. Ju, “Kinetic effects of non-equilibrium plasma-assisted methane oxidation on diffusion flame extinction limits,” Combust. Flame159(1), 221–229 (2012). [CrossRef]
  6. A. Fridman, A. Gutsol, S. Gangoli, Y. Ju, and T. Ombrello, “Combustion-assisted plasma in fuel conversion,” J. Phys. D Appl. Phys.44(27), 274001 (2011). [CrossRef]
  7. A. Fridman, A. Gutsol, S. Gangoli, Y. Ju, and T. Ombrellol, “Characteristics of gliding arc and its application in combustion enhancement,” J. Propul. Power24(6), 1216–1228 (2008). [CrossRef]
  8. T. Ombrello, Y. Ju, and A. Fridman, “Kinetic ignition enhancement of diffusion flames by nonequilibrium magnetic gliding arc plasma,” AIAA J.46(10), 2424–2433 (2008). [CrossRef]
  9. T. Ombrello, X. Qin, Y. Ju, A. Gutsol, A. Fridman, and C. Carter, “Combustion enhancement via stabilized piecewise nonequilibrium gliding arc plasma discharge,” AIAA J.44(1), 142–150 (2006). [CrossRef]
  10. C. M. Du, J. Wang, L. Zhang, H. X. Li, H. Liu, and Y. Xiong, “The application of a non-thermal plasma generated by gas-liquid gliding arc discharge in sterilization,” New J. Phys.14(1), 013010 (2012). [CrossRef]
  11. F. Leipold, Y. Kusano, F. Hansen, and T. Jacobsen, “Decontamination of a rotating cutting tool during operation by means of atmospheric pressure plasmas,” Food Contr.21(8), 1194–1198 (2010). [CrossRef]
  12. F. Leipold, N. Schultz-Jensen, Y. Kusano, H. Bindslev, and T. Jacobsen, “Decontamination of objects in a sealed container by means of atmospheric pressure plasmas,” Food Contr.22(8), 1296–1301 (2011). [CrossRef]
  13. M. Laroussi and F. Leipold, “Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure,” Int. J. Mass Spectrom.233(1-3), 81–86 (2004). [CrossRef]
  14. M. Moreau, N. Orange, and M. G. J. Feuilloley, “Non-thermal plasma technologies: New tools for bio-decontamination,” Biotechnol. Adv.26(6), 610–617 (2008). [CrossRef] [PubMed]
  15. A. Fateev, F. Leipold, Y. Kusano, B. Stenum, E. Tsakadze, and H. Bindslev, “Plasma chemistry in an atmospheric pressure Ar/NH3 dielectric barrier discharge,” Plasma Process. Polym.2(3), 193–200 (2005). [CrossRef]
  16. Y. Kusano, F. Leipold, A. Fateev, B. Stenum, and H. Bindslev, “Production of ammonia-derived radicals in a dielectric barrier discharge and their injection for denitrification,” Surf. Coat. Tech.200(1-4), 846–849 (2005). [CrossRef]
  17. F. Leipold, A. Fateev, Y. Kusano, B. Stenum, and H. Bindslev, “Reduction of NO in the exhaust gas by reaction with N radicals,” Fuel85(10-11), 1383–1388 (2006). [CrossRef]
  18. A. Czernichowski, “Gliding arc - Applications to engineering and environment control,” Pure Appl. Chem.66(6), 1301–1310 (1994). [CrossRef]
  19. A. Fridman, S. Nester, L. A. Kennedy, A. Saveliev, and O. Mutaf-Yardimci, “Gliding arc gas discharge,” Prog. Energ. Combust.25(2), 211–231 (1998). [CrossRef]
  20. A. Bogaerts, E. Neyts, R. Gijbels, and J. van der Mullen, “Gas discharge plasmas and their applications,” Spectrochim. Acta B.57(4), 609–658 (2002). [CrossRef]
  21. C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, “Atmospheric pressure plasmas: A review,” Spectrochim. Acta B.61(1), 2–30 (2006). [CrossRef]
  22. O. Mutaf-Yardimci, A. V. Saveliev, A. A. Fridman, and L. A. Kennedy, “Thermal and nonthermal regimes of gliding arc discharge in air flow,” J. Appl. Phys.87(4), 1632–1641 (2000). [CrossRef]
  23. Y. Kusano, “Plasma surface modification at atmospheric pressure,” Surf. Eng.25(6), 415–416 (2009). [CrossRef]
  24. Y. D. Korolev, O. B. Frants, V. G. Geyman, N. V. Landl, and V. S. Kasyanov, “Low-current “gliding arc” in an air flow,” IEEE Trans. Plasma Sci.39(12), 3319–3325 (2011). [CrossRef]
  25. P. Bruggeman and D. C. Schram, “On OH production in water containing atmospheric pressure plasmas,” Plasma Sources Sci. Technol.19(4), 045025 (2010). [CrossRef]
  26. I. V. Kuznetsova, N. Y. Kalashnikov, A. F. Gutsol, A. A. Fridman, and L. A. Kennedy, “Effect of “overshooting” in the transitional regimes of the low-current gliding arc discharge,” J. Appl. Phys.92(8), 4231–4237 (2002). [CrossRef]
  27. S. Pellerin, J. M. Cormier, F. Richard, K. Musiol, and J. Chapelle, “Determination of the electrical parameters of a bi-dimensional dc Glidarc,” J. Phys. D Appl. Phys.32(8), 891–897 (1999). [CrossRef]
  28. S. Pellerin, F. Richard, J. Chapelle, J. M. Cormier, and K. Musiol, “Heat string model of bi-dimensional dc Glidarc,” J. Phys. D Appl. Phys.33(19), 2407–2419 (2000). [CrossRef]
  29. F. Richard, J. M. Cormier, S. Pellerin, and J. Chapelle, “Physical study of a gliding arc discharge,” J. Appl. Phys.79(5), 2245–2250 (1996). [CrossRef]
  30. B. Benstaali, P. Boubert, B. G. Cheron, A. Addou, and J. L. Brisset, “Density and rotational temperature measurements of the OH degrees and NO degrees radicals produced by a gliding arc in humid air,” Plasma Chem. Plasma Process.22(4), 553–571 (2002). [CrossRef]
  31. S. Pellerin, J. M. Cormier, K. Musiol, B. Pokrzywka, J. Koulidiati, F. Richard, and J. Chapelle, “Spatial fluctuations of 'gliding' arc,” High Temp. Mater. P-US.2, 49–68 (1998).
  32. X. Tu, H. J. Gallon, and J. C. Whitehead, “Dynamic behavior of an atmospheric argon gliding arc plasma,” IEEE Trans. Plasma Sci.39(11), 2900–2901 (2011). [CrossRef]
  33. Y. Kusano, S. Teodoru, F. Leipold, T. L. Andersen, B. F. Sorensen, N. Rozlosnik, and P. K. Michelsen, “Gliding arc discharge - Application for adhesion improvement of fibre reinforced polyester composites,” Surf. Coat. Tech.202(22-23), 5579–5582 (2008). [CrossRef]
  34. N. Balcon, N. Benard, P. Braud, A. Mizuno, G. Touchard, and E. Moreau, “Prospects of airflow control by a gliding arc in a static magnetic field,” J. Phys. D Appl. Phys.41(20), 205204 (2008). [CrossRef]
  35. S. P. Gangoli, A. F. Gutsol, and A. A. Fridman, “A non-equilibrium plasma source: magnetically stabilized gliding arc discharge: I. Design and diagnostics,” Plasma Sources Sci. Technol.19(6), 065003 (2010). [CrossRef]
  36. S. P. Gangoli, A. F. Gutsol, and A. A. Fridman, “A non-equilibrium plasma source: magnetically stabilized gliding arc discharge: II. Electrical characterization,” Plasma Sources Sci. Technol.19(6), 065004 (2010). [CrossRef]
  37. J. C. Sagas, A. H. Neto, A. C. Pereira Filho, H. S. Maciel, and P. T. Lacava, “Basic characteristics of gliding-arc discharges in air and natural gas,” IEEE Trans. Plasma Sci.39(2), 775–780 (2011). [CrossRef]
  38. C. O. Laux, T. G. Spence, C. H. Kruger, and R. N. Zare, “Optical diagnostics of atmospheric pressure air plasmas,” Plasma Sources Sci. Technol.12(2), 125–138 (2003). [CrossRef]
  39. R. K. Hanson, J. M. Seitzman, and P. H. Paul, “Planar laser fluorescence imaging of combustion gases,” Appl. Phys. B-Photo.50, 441–454 (1990).
  40. S. Hammack, X. Rao, T. Lee, and C. Carter, “Direct-coupled plasma-assisted combustion using a microwave waveguide torch,” IEEE Trans. Plasma Sci.39(12), 3300–3306 (2011). [CrossRef]
  41. A. Fridman, A. Chirokov, and A. Gutsol, “Non-thermal atmospheric pressure discharges,” J. Phys. D Appl. Phys.38(2), R1–R24 (2005). [CrossRef]
  42. A. Lebouvier, C. Delalondre, F. Fresnet, F. Cauneau, and L. Fulcheri, “3D MHD modelling of low current-high voltage dc plasma torch under restrike mode,” J. Phys. D Appl. Phys.45(2), 025204 (2012). [CrossRef]
  43. S. Teodoru, Y. Kusano, and A. Bogaerts, “The effect of O2 in a humid O2/N2/NOx gas mixture on NOx and N2O remediation by an atmospheric pressure dielectric barrier discharge,” Plasma Process. Polym.9(7), 652–689 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (3840 KB)     
» Media 2: MOV (2348 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited