OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 6045–6052

Supercontinuum-based 10-GHz flat-topped optical frequency comb generation

Rui Wu, Victor Torres-Company, Daniel E. Leaird, and Andrew M. Weiner  »View Author Affiliations


Optics Express, Vol. 21, Issue 5, pp. 6045-6052 (2013)
http://dx.doi.org/10.1364/OE.21.006045


View Full Text Article

Enhanced HTML    Acrobat PDF (948 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The generation of high-repetition-rate optical frequency combs with an ultra-broad, coherent and smooth spectrum is important for many applications in optical communications, radio-frequency photonics and optical arbitrary waveform generation. Usually, nonlinear broadening techniques of comb-based sources do not provide the required flatness over the whole available bandwidth. Here we present a 10-GHz ultra-broadband flat-topped optical frequency comb (> 3.64-THz or 28 nm bandwidth with ~365 spectral lines within 3.5-dB power variation) covering the entire C-band. The key enabling point is the development of a pre-shaping-free directly generated Gaussian comb-based 10-GHz pulse train to seed a highly nonlinear fiber with normal dispersion profile. The combination of the temporal characteristics of the seed pulses with the nonlinear device allows the pulses to enter into the optical wave-breaking regime, thus achieving a smooth flat-topped comb spectral envelope. To further illustrate the high spectral coherence of the comb, we demonstrate high-quality pedestal-free short pulse compression to the transform-limited duration.

© 2013 OSA

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.4510) Fiber optics and optical communications : Optical communications
(060.5060) Fiber optics and optical communications : Phase modulation
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(230.2090) Optical devices : Electro-optical devices
(320.5520) Ultrafast optics : Pulse compression

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: December 27, 2012
Revised Manuscript: February 14, 2013
Manuscript Accepted: February 23, 2013
Published: March 4, 2013

Citation
Rui Wu, Victor Torres-Company, Daniel E. Leaird, and Andrew M. Weiner, "Supercontinuum-based 10-GHz flat-topped optical frequency comb generation," Opt. Express 21, 6045-6052 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-5-6045


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Morioka, K. Mori, and M. Saruwatari, “More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibers,” Electron. Lett.29(10), 862–864 (1993). [CrossRef]
  2. D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics5(6), 364–371 (2011). [CrossRef]
  3. Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics1(8), 463–467 (2007). [CrossRef]
  4. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332(6029), 555–559 (2011). [CrossRef] [PubMed]
  5. Z. Tong, A. O. Wiberg, E. Myslivets, B. P. Kuo, N. Alic, and S. Radic, “Spectral linewidth preservation in parametric frequency combs seeded by dual pumps,” Opt. Express20(16), 17610–17619 (2012). [CrossRef] [PubMed]
  6. F. Ferdous, H. Miao, D. E. Learid, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5(12), 770–776 (2011). [CrossRef]
  7. S. Papp and S. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A84(5), 053833–053839 (2011). [CrossRef]
  8. F. Ferdous, H. Miao, P. H. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Probing coherence in microcavity frequency combs via optical pulse shaping,” Opt. Express20(19), 21033–21043 (2012). [CrossRef] [PubMed]
  9. M. Fujiwara, M. Teshima, J. Kani, H. Suzuki, N. Takachio, and K. Iwatsuki, “Optical carrier supply module using flattened optical multicarrier generation based on sinusoidal amplitude and phase hybrid modulation,” J. Lightwave Technol.21(11), 2705–2714 (2003). [CrossRef]
  10. T. Yamamoto, T. Komukai, K. Suzuki, and A. Takada, “Multicarrier light source with flattened spectrum using phase modulators and dispersion medium,” J. Lightwave Technol.27(19), 4297–4305 (2009). [CrossRef]
  11. R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett.35(19), 3234–3236 (2010). [CrossRef] [PubMed]
  12. K. Imai, M. Kourogi, and M. Ohtsu, “30-THz span optical frequency comb generation by self-phase modulation in an optical fiber,” J. Lightwave Technol.34(1), 54–60 (1998).
  13. I. Morohashi, T. Sakamoto, H. Sotobayashi, T. Kawanishi, and I. Hosako, “Broadband wavelength-tunable ultrashort pulse source using a mach-zehnder modulator and dispersion-flattened dispersion-decreasing fiber,” Opt. Lett.34(15), 2297–2299 (2009). [CrossRef] [PubMed]
  14. C. B. Huang, S. G. Park, D. E. Leaird, and A. M. Weiner, “Nonlinearly broadened phase-modulated continuous-wave laser frequency combs characterized using DPSK decoding,” Opt. Express16(4), 2520–2527 (2008). [CrossRef] [PubMed]
  15. V. R. Supradeepa and A. M. Weiner, “Bandwidth scaling and spectral flatness enhancement of optical frequency combs from phase-modulated continuous-wave lasers using cascaded four-wave mixing,” Opt. Lett.37(15), 3066–3068 (2012). [CrossRef] [PubMed]
  16. K. Tamura, H. Kubota, and M. Nakazawa, “Fundamentals of stable continuum generation at high repetition rates,” J. Lightwave Technol.36(7), 773–779 (2000).
  17. Y. Takushima and K. Kikuchi, “10-GHz, over 20-channel multiwavelength pulse source by slicing super-continuum spectrum generated in normal-dispersion fiber,” IEEE Photon. Technol. Lett.11(3), 322–324 (1999). [CrossRef]
  18. F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M. A. Roelens, P. Petropoulos, and D. J. Richardson, “Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating,” Opt. Express14(17), 7617–7622 (2006). [CrossRef] [PubMed]
  19. A. Clarke, D. Williams, M. Roelens, and B. Eggleton, “Reconfigurable optical pulse generator employing a fourier-domain programmable optical processor,” IEEE Photon. Technol. Lett.28(1), 97–103 (2010).
  20. X. Yang, D. J. Richardson, and P. Petropoulos, “Nonlinear generation of ultra-flat broadened spectrum based on adaptive pulse shaping,” J. Lightwave Technol.30(12), 1971–1977 (2012). [CrossRef]
  21. K. Kashiwagi, H. Ishizu, Y. Kodama, S. Choi, and T. Kurokawa, “Highly precise optical pulse synthesis for flat spectrum supercontinuum generation with wide mode spacing,” in European Conference on Optical Communication (ECOC), We.7.E.5 (2010). [CrossRef]
  22. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71(5), 1929–1960 (2000). [CrossRef]
  23. H. Tsuda, Y. Tanaka, T. Shioda, and T. Kurokawa, “Analog and digital optical pulse synthesizers using arrayed-waveguide gratings for high-speed optical signal processing,” J. Lightwave Technol.26(6), 670–677 (2008). [CrossRef]
  24. Y. Tanaka, R. Kobe, T. Kurokawa, T. Shioda, and H. Tsuda, “Generation of 100-Gb/s packets having 8-bit return-to-zero patterns using an optical pulse synthesizer with a lookup table,” IEEE Photon. Technol. Lett.21(1), 39–41 (2009). [CrossRef]
  25. R. Wu, C. M. Long, D. E. Leaird, and A. M. Weiner, “Directly generated Gaussian-shaped optical frequency comb for microwave photonic filtering and picosecond pulse generation,” IEEE Photon. Technol. Lett.24(17), 1484–1486 (2012). [CrossRef]
  26. V. Torres-Company, J. Lancis, and P. Andrés, “Lossless equalization of frequency combs,” Opt. Lett.33(16), 1822–1824 (2008). [CrossRef] [PubMed]
  27. J. Azana, “Time-to-frequency conversion using a single time lens,” Opt. Commun.217(1–6), 205–209 (2003). [CrossRef]
  28. J. van Howe and C. Xu, “Ultrafast optical signal processing based upon space-time dualities,” J. Lightwave Technol.24(7), 2649–2662 (2006). [CrossRef]
  29. V. Torres-Company, J. Lancis, and P. Andres, “Space-time analogies in optics,” Prog. Opt.56, 1–80 (2011). [CrossRef]
  30. V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics6(3), 186–194 (2012). [CrossRef]
  31. M. Song, V. Torres-Company, A. J. Metcalf, and A. M. Weiner, “Multitap microwave photonic filters with programmable phase response via optical frequency comb shaping,” Opt. Lett.37(5), 845–847 (2012). [CrossRef] [PubMed]
  32. M. Song, R. Wu, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “Programmable microwave photonic phase filters with large time-bandwidth product based on ultra-broadband optical frequency comb generation,” in Microwave Photonics (MWP),2012 IEEE Topical Meeting (2012).
  33. V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Self-referenced characterization of optical frequency combs and arbitrary waveforms using a simple, linear, zero-delay implementation of spectral shearing interferometry,” Opt. Express18(17), 18171–18179 (2010). [CrossRef] [PubMed]
  34. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  35. C. Finot, B. Kibler, L. Provost, and S. Wabnitz, “Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B25(11), 1938–1948 (2008). [CrossRef]
  36. W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, “Optical wave breaking of pulses in nonlinear optical fibers,” Opt. Lett.10(9), 457–459 (1985). [CrossRef] [PubMed]
  37. Y. Liu, H. Tu, and S. A. Boppart, “Wave-breaking-extended fiber supercontinuum generation for high compression ratio transform-limited pulse compression,” Opt. Lett.37(12), 2172–2174 (2012). [CrossRef] [PubMed]
  38. J. P. Heritage, R. N. Thurston, W. J. Tomlinson, A. M. Weiner, and R. H. Stolen, “Spectral windowing of frequency-modulated optical pulses in a grating compressor,” Appl. Phys. Lett.47(2), 87–89 (1985). [CrossRef]
  39. A. M. Weiner, Ultrafast Optics (Wiley, 2009), Chap. 3.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited