OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 6053–6060

Optical properties of coupled three-dimensional Ge quantum dot crystals

Yingjie Ma, Zhenyang Zhong, Quan Lv, Weiyang Qiu, Xinjun Wang, Tong Zhou, Yongliang Fan, and Zuimin Jiang  »View Author Affiliations


Optics Express, Vol. 21, Issue 5, pp. 6053-6060 (2013)
http://dx.doi.org/10.1364/OE.21.006053


View Full Text Article

Enhanced HTML    Acrobat PDF (2928 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on optical properties of coupled three-dimensional (3D) Ge quantum dot crystals (QDCs). With increasing the vertical periodic number of the QDCs, the photoluminescence (PL) spectral linewidth decreased exponentially, and so did the peak energy blueshift caused by increasing excitation power, which are attributed to the electronic coupling and thus the formation of miniband. In the PL spectra, the relative intensity of the transverse-optical (TO) phonon replica also decreases with increasing the vertical periodic number, which is attributed to the increased Brillouin-zone folding effect in vertical direction and therewith the relaxation of indirect transition nature of exciton recombination. Besides, the optical reflectivity at the interband transition energy was much more reduced for the QDCs than for the in-plane disordered QDs grown with the same parameters, indicating a higher interband absorption of the QDCs due to the miniband formation.

© 2013 OSA

OCIS Codes
(160.4760) Materials : Optical properties
(250.5230) Optoelectronics : Photoluminescence
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:
Materials

History
Original Manuscript: January 22, 2013
Revised Manuscript: February 27, 2013
Manuscript Accepted: February 27, 2013
Published: March 4, 2013

Virtual Issues
Vol. 8, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Yingjie Ma, Zhenyang Zhong, Quan Lv, Weiyang Qiu, Xinjun Wang, Tong Zhou, Yongliang Fan, and Zuimin Jiang, "Optical properties of coupled three-dimensional Ge quantum dot crystals," Opt. Express 21, 6053-6060 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-5-6053


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. I. Yakimov, A. A. Bloshsin, and A. V. Dvurechenskii, “Enhanced oscillator strength of interband transitions in coupled Ge/Si quantum dots,” Appl. Phys. Lett.93(13), 132105 (2008). [CrossRef]
  2. M. Manoharan, Y. Tsuchiya, S. Oda, and H. Mizuta, “Stochastic Coulomb blockade in coupled asymmetric silicon dots formed by pattern-dependent oxidation,” Appl. Phys. Lett.92(9), 092110 (2008). [CrossRef]
  3. R. Koole, P. Liljeroth, C. Donegá, D. Vanmaekelbergh, and A. Meijerink, “Electronic Coupling and Exciton Energy Transfer in CdTe Quantum-Dot Molecules,” J. Am. Chem. Soc.128(32), 10436–10441 (2006). [CrossRef] [PubMed]
  4. G. J. Beirne, C. Hermannstädter, L. Wang, A. Rastelli, O. G. Schmidt, and P. Michler, “Quantum Light Emission of Two Lateral Tunnel-Coupled (In,Ga)As/GaAs Quantum Dots Controlled by a Tunable Static Electric Field,” Phys. Rev. Lett.96(13), 137401 (2006). [CrossRef] [PubMed]
  5. H. J. Krenner, M. Sabathil, E. C. Clark, A. Kress, D. Schuh, M. Bichler, G. Abstreiter, and J. J. Finley, “Direct Observation of Controlled Coupling in an Individual Quantum Dot Molecule,” Phys. Rev. Lett.94(5), 057402 (2005). [CrossRef] [PubMed]
  6. M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and Entangling of Quantum States in Quantum Dot Molecules,” Science291(5503), 451–453 (2001). [CrossRef] [PubMed]
  7. Q. Shao, A. A. Balandin, A. I. Fedoseyev, and M. Turowski, “Intermediate-band solar cells based on quantum dot supracrystals,” Appl. Phys. Lett.91(16), 163503 (2007). [CrossRef]
  8. A. A. Balandin and O. L. Lazarenkova, “Mechanism for thermoelectric figure-of-merit enhancement in regimented quantum dot superlattices,” Appl. Phys. Lett.82(3), 415–417 (2003). [CrossRef]
  9. H. Z. Song, K. Akahane, S. Lan, H. Z. Xu, Y. Okada, and M. Kawabe, “In-plane photocurrent of self-assembled InxGa1−xAs/GaAs(311)B quantum dot arrays,” Phys. Rev. B64(8), 085303 (2001). [CrossRef]
  10. G. S. Solomon, J. A. Trezza, A. F. Marshall, and J. S. Harris, “Vertically Aligned and Electronically Coupled Growth Induced InAs Islands in GaAs,” Phys. Rev. Lett.76(6), 952–955 (1996). [CrossRef] [PubMed]
  11. S. Lan, K. Akahane, H. Song, Y. Okada, M. Kawabe, T. Nishimura, S. Nishikawa, and O. Wada, “Formation of extended states in disordered two-dimensional In0.4Ga0.6As/GaAs(311)B quantum dot superlattices,” J. Appl. Phys.88(1), 227–235 (2000). [CrossRef]
  12. T. Sugaya, T. Amano, M. Mori, and S. Niki, “Miniband formation in InGaAs quantum dot superlattice,” Appl. Phys. Lett.97(4), 043112 (2010). [CrossRef]
  13. D. L. Nika, E. P. Pokatilov, Q. Shao, and A. A. Balandin, “Charge-carrier states and light absorption in ordered quantum dot superlattices,” Phys. Rev. B76(12), 125417 (2007). [CrossRef]
  14. S. Rodriguez-Bolivar, F. M. Gomez-Campos, A. Luque-Rodriguez, J. A. Lopez-Villanueva, J. A. Jimenez-Tejada, and J. E. Carceller, “Miniband structure and photon absorption in regimented quantum dot systems,” J. Appl. Phys.109(7), 074303 (2011). [CrossRef]
  15. D. Grüzmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-Dimensional Si/Ge Quantum Dot Crystals,” Nano Lett.7(10), 3150–3156 (2007). [CrossRef]
  16. O. L. Lazarenkova and A. A. Balandin, “Miniband formation in a quantum dot crystal,” J. Appl. Phys.89(10), 5509–5515 (2001). [CrossRef]
  17. O. L. Lazarenkova and A. A. Balandin, “Electron and phonon energy spectra in a three-dimensional regimented quantum dot superlattice,” Phys. Rev. B66(24), 245319 (2002). [CrossRef]
  18. Z. Zhong and G. Bauer, “Site-controlled and size-homogeneous Ge islands on prepatterned Si (001) substrates,” Appl. Phys. Lett.84(11), 1922–1924 (2004). [CrossRef]
  19. Y. J. Ma, Z. Zhong, Q. Lv, T. Zhou, X. J. Yang, Y. L. Fan, Y. Q. Wu, J. Zou, and Z. M. Jiang, “Formation of coupled three-dimensional GeSi quantum dot crystals,” Appl. Phys. Lett.100(15), 153113 (2012). [CrossRef]
  20. E. Lausecker, M. Brehm, M. Grydlik, F. Hackl, I. Bergmair, M. Mühlberger, T. Fromherz, F. Schäffler, and G. Bauer, “UV nanoimprint lithography for the realization of large-area ordered SiGe/Si(001) island arrays,” Appl. Phys. Lett.98(14), 143101 (2011). [CrossRef]
  21. Y. J. Ma, Z. Zhong, X. J. Yang, Y. L. Fan, and Z. M. Jiang, “Factors influencing epitaxial growth of three-dimensional Ge quantum dot crystals on pit-patterned Si substrate,” Nanotechnology24(1), 015304 (2013). [CrossRef]
  22. C. J. Park, W. C. Yang, H. Y. Cho, M. C. Kim, S. Kim, and S. H. Choia, “Effect of Si-spacer thickness on optical properties of multistacked Ge quantum dots grown by rapid thermal chemical vapor deposition,” J. Appl. Phys.101(1), 014304 (2007). [CrossRef]
  23. J. Wan, Y. H. Luo, Z. M. Jiang, G. Jin, J. L. Liu, K. L. Wang, X. Z. Liao, and J. Zou, “Effects of interdiffusion on the band alignment of GeSi dots,” Appl. Phys. Lett.79(13), 1980–1982 (2001). [CrossRef]
  24. M. W. Dashiell, U. Denker, and O. G. Schmidt, “Photoluminescence investigation of phononless radiative recombination and thermal-stability of germanium hut clusters on silicon(001),” Appl. Phys. Lett.79(14), 2261–2263 (2001). [CrossRef]
  25. Y. W. Chen, B. Y. Pan, T. X. Nie, P. X. Chen, F. Lu, Z. M. Jiang, and Z. Zhong, “Enhanced photoluminescence due to lateral ordering of GeSi quantum dots on patterned Si(001) substrates,” Nanotechnology21(17), 175701 (2010). [CrossRef] [PubMed]
  26. C. Dais, G. Müssler, H. Sigg, T. Fromherz, V. Auzelyte, H. H. Solak, and D. Grützmacher, “Photoluminescence studies of SiGe quantum dot arrays prepared by templated self-assembly,” Europhys. Lett.84(6), 67017-p1–67017-p5 (2008). [CrossRef]
  27. O. G. Schmidt, K. Eberl, and Y. Rau, “Strain and band-edge alignment in single and multiple layers of self-assembled Ge/Si and GeSi/Si islands,” Phys. Rev. B62(24), 16715–16720 (2000). [CrossRef]
  28. M. Cazayous, J. Groenen, A. Zwick, A. Mlayah, R. Carles, J. L. Bischoff, and D. Dentel, “Resonant Raman scattering by acoustic phonons in self-assembled quantum-dot multilayers: From a few layers to superlattices,” Phys. Rev. B66(19), 195320 (2002). [CrossRef]
  29. Y. C. Wen, J. H. Sun, C. Dais, D. Grüuzmacher, T. T. Wu, J. W. Shi, and C. K. Sun, “Three-dimensional phononic nanocrystal composed of ordered quantum dots,” Appl. Phys. Lett.96(12), 123113 (2010). [CrossRef]
  30. A. Yakimov, A. Nikiforov, A. Bloshkin, and A. Dvurechenskii, “Electromodulated reflectance study of self-assembled Ge/Si quantum dots,” Nanoscale Res. Lett.6(1), 208 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited