OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 6082–6090

400 mW low noise continuous-wave single-frequency Er,Yb:YAl3(BO3)4 laser at 1.55 μm

Yuanji Li, Jinxia Feng, Peng Li, Kuanshou Zhang, Yujin Chen, Yanfu Lin, and Yidong Huang  »View Author Affiliations

Optics Express, Vol. 21, Issue 5, pp. 6082-6090 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1443 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We build up a LD end-pumped Er,Yb:YAB laser at 1.55 μm and improve the laser performance by end cooling the gain medium efficiently through a sapphire plate. 680 mW cw single transverse mode laser output was obtained with the slope efficiency of 16.3%. Using an etalon placed in the laser cavity, 400 mW cw single frequency 1.55 μm laser output was achieved with the slope efficiency of 11.8%. The laser power fluctuation was less than ± 1.3% in a given period of 1.5 hours. The 1.55 μm laser presents low noise properties, that the intensity and the phase noise reach the shot noise level for the analysis frequencies higher than 4 MHz and 5 MHz, respectively.

© 2013 OSA

OCIS Codes
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3570) Lasers and laser optics : Lasers, single-mode
(140.6810) Lasers and laser optics : Thermal effects

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 3, 2013
Revised Manuscript: February 16, 2013
Manuscript Accepted: February 19, 2013
Published: March 4, 2013

Yuanji Li, Jinxia Feng, Peng Li, Kuanshou Zhang, Yujin Chen, Yanfu Lin, and Yidong Huang, "400 mW low noise continuous-wave single-frequency Er,Yb:YAl3(BO3)4 laser at 1.55 μm," Opt. Express 21, 6082-6090 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium-ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater.11(2-3), 269–288 (1999). [CrossRef]
  2. B. Denker, B. Galagan, I. Ivleva, V. Osiko, S. Sverchkov, I. Voronina, J. E. Hellstrom, G. Karlsson, and F. Laurell, “Luminescent and laser properties of Yb–Er:GdCa4O(BO3)3: a new crystal for eye-safe 1.5-μm lasers,” Appl. Phys. B79(5), 577–581 (2004). [CrossRef]
  3. M. Brunel, A. Amon, and M. Vallet, “Dual-polarization microchip laser at 1.53 µm,” Opt. Lett.30(18), 2418–2420 (2005). [CrossRef] [PubMed]
  4. J. H. Huang, Y. J. Chen, Y. F. Lin, X. H. Gong, Z. D. Luo, and Y. D. Huang, “High efficient 1.56 microm laser operation of Czochralski grown Er:Yb:Sr3Y2(BO3)4 crystal,” Opt. Express16(22), 17243–17248 (2008). [CrossRef] [PubMed]
  5. S. L. Braunstein and P. Loock, “Quantum information with continuous variables,” Rev. Mod. Phys.77(2), 513–577 (2005). [CrossRef]
  6. J. X. Feng, X. T. Tian, Y. M. Li, and K. S. Zhang, “Generation of a squeezing vacuum at a telecommunication wavelength with periodically poled LiNbO3,” Appl. Phys. Lett.92(22), 221102 (2008). [CrossRef]
  7. T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett.104(25), 251102 (2010), http://prl.aps.org/pdf/PRL/v104/i25/e251102 . [CrossRef] [PubMed]
  8. T. Eberle, V. Handchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source,” Phys. Rev. A83(5), 052329 (2011). [CrossRef]
  9. M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express19(25), 25763–25772 (2011). [CrossRef] [PubMed]
  10. S. T. Lin, Y. Y. Lin, Y. C. Huang, A. C. Chiang, and J. T. Shy, “Observation of thermal-induced optical guiding and bistability in a mid-IR continuous-wave, singly resonant optical parametric oscillator,” Opt. Lett.33(20), 2338–2340 (2008). [CrossRef] [PubMed]
  11. J. L. Liu, Q. Liu, H. Li, P. Li, and K. S. Zhang, “Low noise, continuous-wave single-frequency 1.5 μm laser generated by a singly resonant optical parametric oscillator,” Chin. Phys. B20(11), 114215 (2011). [CrossRef]
  12. S. Taccheo, G. Sorbello, P. Laporta, G. Karlsson, and F. Laurell, “230-mW diode-pumped single-frequency Er:Yb laser at 1.5 μm,” IEEE Photon. Technol. Lett.13(1), 19–21 (2001). [CrossRef]
  13. R. van Leeuwen, B. Xu, L. S. Watkins, Q. Wang, and C. Ghosh, “Low Noise High Power Ultra-Stable Diode Pumped Er-Yb Phosphate Glass Laser,” Proc. SPIE6975, 69750K, 69750K-9 (2008). [CrossRef]
  14. G. É. Pillet, L. Ï. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J.-P. Huignard, and A. Le Floch, “Dual-Frequency Laser at 1.5 mm for Optical Distribution and Generation of High-Purity Microwave Signals,” J. Lightwave Technol.26(15), 2764–2773 (2008). [CrossRef]
  15. N. A. Tolstik, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, V. V. Maltsev, O. V. Pilipenko, E. V. Koporulina, and N. I. Leonyuk, “Efficient 1 W continuous-wave diode-pumped Er,Yb:YAl3(BO3)4 laser,” Opt. Lett.32(22), 3233–3235 (2007). [CrossRef] [PubMed]
  16. Y. J. Li, P. Li, J. X. Feng, and K. S. Zhang, “Theoretical and experimental investigation of Er3+,Yb3+:YAl3(BO3)4 solid-state laser,” IEEE J. Quantum Electron.submitted.
  17. R. Weber, B. Neuenschwander, M. Mac Donald, M. B. Roos, and H. P. Weber, “Cooling schemes for longitudinally diode-pumped Nd:YAG rods,” IEEE J. Quantum Electron.34(6), 1046–1053 (1998). [CrossRef]
  18. Y. J. Chen, Y. F. Lin, X. H. Gong, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “2.0 W diode-pumped Er3+,Yb3+: YAl3(BO3)4 laser at 1.5–1.6 μm,” Appl. Phys. Lett.89(24), 241111 (2006). [CrossRef]
  19. M. Tsunekane, N. Taguchi, and H. Inaba, “Reduction of thermal effects in a diode-end-pumped, composite Nd:YAG rod with a sapphire end,” Appl. Opt.37(15), 3290–3294 (1998). [CrossRef] [PubMed]
  20. F. Song, S. J. Liu, Z. H. Wu, H. Cai, X. Zhang, L. Teng, and J. G. Tian, “Determination of the thermal loading in laser-diode-pumped erbium-ytterbium-codoped phosphate glass microchip laser,” J. Opt. Soc. Am. B24(9), 2327–2332 (2007). [CrossRef]
  21. R. Martínez Vázquez, R. Osellame, M. Marangoni, R. Ramponi, and E. Diéguez, “Er3+ doped YAl3(BO3)4 single crystals: determination of the refractive indices,” Opt. Mater.26(3), 231–233 (2004). [CrossRef]
  22. D. Jaque, J. Capmany, J. Rams, and J. G. Sole, “Effect of pump heating on laser and spectroscopic properties of the Nd:[YAl3(BO3)4] self-frequency-doubling laser,” Appl. Phys. (Berl.)87, 1042–1048 (2000).
  23. S. Machida and Y. Yamamoto, “Quantum-limited operation of balanced mixer homodyne and heterodyne receivers,” IEEE J. Quantum Electron.22(5), 617–624 (1986). [CrossRef]
  24. T. C. Zhang, J. P. Poizat, P. Grelu, J. F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum noise of free-running and externally-stabilized laser diodes,” Quantum Semiclassic. Opt.7(4), 601–613 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited