OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 6139–6152

Extraordinary optical transmission based on subwavelength metallic grating with ellipse walls

Yuzhang Liang, Wei Peng, Rui Hu, and Helin Zou  »View Author Affiliations

Optics Express, Vol. 21, Issue 5, pp. 6139-6152 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2651 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper presents a nanometer-sized metallic film periodically pierced by narrow slits with ellipse walls deposited on a substrate that demonstrates special optical properties of broadband extraordinary optical transmission (BEOT). Compared to slits with straight walls, the metal slits with nonlinearly tapered ellipse walls can collect more light on the upper surface, which is coupled into a gap plasmon polariton propagating along the ellipse walls, then delivers the light at the smaller exit slit opening. In the visible spectral region, BEOT of TM-polarized light is achieved with up to 80% transmission at resonance, which is resulted from the simultaneous enhancement of zero-order slit resonance and higher-order slit resonances excited due to the existence of the substrate. The spectral range of BEOT is limited by Wood-Rayleigh anomalies and surface plasmon polariton resonances (SPPs). The BEOT spectrum of oblique incidence with small incident angle that is divided into two separate bands are also presented and analyzed theoretically. This metallic grating overcomes the low optical transmission limit of the structures with wavelength-sized grating period in visible and near-IR regions. It can be used to design nanostructured BEOT polarizer, which is an important component in novel biomimetic-based optoelectronic systems especially those in skylight polarized environment.

© 2013 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(130.5440) Integrated optics : Polarization-selective devices

ToC Category:
Diffraction and Gratings

Original Manuscript: January 10, 2013
Revised Manuscript: February 8, 2013
Manuscript Accepted: February 21, 2013
Published: March 4, 2013

Virtual Issues
Vol. 8, Iss. 4 Virtual Journal for Biomedical Optics

Yuzhang Liang, Wei Peng, Rui Hu, and Helin Zou, "Extraordinary optical transmission based on subwavelength metallic grating with ellipse walls," Opt. Express 21, 6139-6152 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998). [CrossRef]
  2. U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B58(23), 15419–15421 (1998). [CrossRef]
  3. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010). [CrossRef]
  4. S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly Perfect Fano Transmission Resonances through Nanoslits Drilled in a Metallic Membrane,” Phys. Rev. Lett.104(2), 027401 (2010). [CrossRef] [PubMed]
  5. Y.-T. Yoon, C.-H. Park, and S.-S. Lee, “Highly efficient color filter incorporating a thin metal-dielectric resonant structure,” Appl. Phys. Express5(2), 022501 (2012). [CrossRef]
  6. C.-H. Park, Y.-T. Yoon, and S.-S. Lee, “Polarization-independent visible wavelength filter incorporating a symmetric metal-dielectric resonant structure,” Opt. Express20(21), 23769–23777 (2012). [CrossRef] [PubMed]
  7. L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett.9(1), 235–238 (2009). [CrossRef] [PubMed]
  8. E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmon photon sorters for spectral and polarimetric imaging,” Nat. Photonics2(3), 161–164 (2008). [CrossRef]
  9. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.83(14), 2845–2848 (1999). [CrossRef]
  10. P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Møller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A, Pure Appl. Opt.2(1), 48–51 (2000). [CrossRef]
  11. Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett.88(5), 057403 (2002). [CrossRef] [PubMed]
  12. F. J. García-Vidal and L. Martín-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B66(15), 155412 (2002). [CrossRef]
  13. J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett.94(19), 197401 (2005). [CrossRef] [PubMed]
  14. K. G. Lee and Q. H. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett.95(10), 103902 (2005). [CrossRef] [PubMed]
  15. T. Ongarello, F. Romanato, P. Zilio, and M. Massari, “Polarization independence of extraordinary transmission trough 1D metallic gratings,” Opt. Express19(10), 9426–9433 (2011). [CrossRef] [PubMed]
  16. A. T. Rahman, P. Majewski, and K. Vasilev, “Extraordinary optical transmission: coupling of the Wood-Rayleigh anomaly and the Fabry-Perot resonance,” Opt. Lett.37(10), 1742–1744 (2012). [CrossRef] [PubMed]
  17. T. Søndergaard, S. I. Bozhevolnyi, S. M. Novikov, J. Beermann, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett.10(8), 3123–3128 (2010). [CrossRef] [PubMed]
  18. J. Beermann, T. Søndergaard, S. M. Novikov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Field enhancement and extraordinary optical transmission by tapered periodic slits in gold films,” New J. Phys.13(6), 063029 (2011). [CrossRef]
  19. H. Shen and B. Maes, “Enhanced optical transmission through tapered metallic gratings,” Appl. Phys. Lett.100(24), 241104 (2012). [CrossRef]
  20. S. B. Karman, S. Z. M. Diah, and I. C. Gebeshuber, “Bio-Inspired polarized skylight-based navigation sensor: a review,” Sensors (Basel Switzerland)12(11), 14232–14261 (2012). [CrossRef]
  21. T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission with tapered slits: effect of higher diffraction and slit resonance orders,” J. Opt. Soc. Am. B29(1), 130–137 (2012). [CrossRef]
  22. Y. Liang and W. Peng, “Theoretical study of transmission characteristics of subwavelength nanostructured metallic grating,” Appl. Spec.67(1), 49–53 (2013). [CrossRef]
  23. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).
  24. S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. Lett.77(7), 075401 (2008).
  25. L. Rayleigh, “On the dynamical theory of gratings,” Proc. Roy. Soc. London, Ser. A.79(532), 399–416 (1907). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited