OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 6153–6161

Wavefront control by stacked metal-dielectric hole array with variable hole shapes

Takayuki Matsui, Tsuyoshi Nomura, Atsushi Miura, Hisayoshi Fujikawa, Naoki Ikeda, Daiju Tsuya, Hideki T. Miyazaki, Yoshimasa Sugimoto, Masanori Ozaki, Masanori Hangyo, and Kiyoshi Asakawa  »View Author Affiliations

Optics Express, Vol. 21, Issue 5, pp. 6153-6161 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2075 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A stacked metal-dielectric hole array (SHA) containing rectangular holes whose shape gradually varies in-plane is proposed as a means of achieving wavefront control. The dependence of the transmitted phase on the frequency can be tuned by the hole shape, in particular the length of the sides that are normal to the incident polarization. The combination of periodic holes along the polarization direction and the gradual change in hole shape normal to the polarization direction produce an inclined wavefront for 1-dimensional beam steering. An in-plane phase difference of 0.6π using an SHA with a thickness of one-sixth of the wavelength has been experimentally demonstrated.

© 2013 OSA

OCIS Codes
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Diffraction and Gratings

Original Manuscript: January 10, 2013
Revised Manuscript: February 22, 2013
Manuscript Accepted: February 23, 2013
Published: March 4, 2013

Takayuki Matsui, Tsuyoshi Nomura, Atsushi Miura, Hisayoshi Fujikawa, Naoki Ikeda, Daiju Tsuya, Hideki T. Miyazaki, Yoshimasa Sugimoto, Masanori Ozaki, Masanori Hangyo, and Kiyoshi Asakawa, "Wavefront control by stacked metal-dielectric hole array with variable hole shapes," Opt. Express 21, 6153-6161 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445, 39–46 (2007). [CrossRef] [PubMed]
  2. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455, 376–379 (2008). [CrossRef] [PubMed]
  3. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998). [CrossRef]
  4. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett.95, 137404 (2005). [CrossRef] [PubMed]
  5. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science312, 892–894 (2006). [CrossRef] [PubMed]
  6. R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B79, 075425 (2009). [CrossRef]
  7. A. Mary, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Theory of negative-refractive-index response of double-fishnet structures,” Phys. Rev. Lett.101, 103902 (2008). [CrossRef] [PubMed]
  8. S. Maier, Plasmonics: Fundamentals and Applications (Springer Verlag, 2007).
  9. H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett.96, 097401 (2006). [CrossRef] [PubMed]
  10. H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature452, 728–731 (2008). [CrossRef] [PubMed]
  11. J. Yang, C. Sauvan, H. T. Liu, and P. Lalanne, “Theory of fishnet negative-index optical metamaterials,” Phys. Rev. Lett.107, 043903 (2011). [CrossRef] [PubMed]
  12. D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett.98, 093113 (2011). [CrossRef]
  13. S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for cmos image sensor applications,” Nano Lett.12, 4349–4354 (2012). [CrossRef] [PubMed]
  14. A. Rottler, M. Harland, M. Bröll, S. Schwaiger, D. Stickler, A. Stemmann, C. Heyn, D. Heitmann, and S. Mendach, “Rolled-up nanotechnology for the fabrication of three-dimensional fishnet-type gaas-metal metamaterials with negative refractive index at near-infrared frequencies,” Appl. Phys. Lett.100, 151104 (2012). [CrossRef]
  15. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334, 333–337 (2011). [CrossRef] [PubMed]
  16. F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultra-thin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12, 4932–4936 (2012). [CrossRef] [PubMed]
  17. T. Matsui, H. T. Miyazaki, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, M. Ochiai, Y. Sugimoto, M. Ozaki, M. Hangyo, and K. Asakawa, “Transmission phase control by stacked metal-dielectric hole array with two-dimensional geometric design,” Opt. Express20, 16092–16103 (2012). [CrossRef] [PubMed]
  18. A. Ourir, A. D. Lustrac, and J. M. Lourtioz, “All-metamaterial-based subwavelength cavities (λ/60) for ultrathin directive antennas,” Appl. Phys. Lett.88, 084103 (2006). [CrossRef]
  19. S. Wang, F. Garet, K. Blary, C. Croënne, E. Lheurette, J.-L. Coutaz, and D. Lippens, “Composite left/right-handed stacked hole arrays at submillimeter wavelengths,” J. Appl. Phys.107, 074510 (2010). [CrossRef]
  20. H. Chen, B. I. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, “Controllable left-handed metamaterial and its application to a steerable antenna,” Appl. Phys. Lett.89, 053509 (2006). [CrossRef]
  21. A. Ourir, S. N. Burokur, and A. D. Lustrac, “Phase-varying metamaterial for compact steerable directive antenna,” Electron. Lett.43, 493–494 (2007). [CrossRef]
  22. R. Gordon and A. G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express13, 1933–1938 (2005). [CrossRef] [PubMed]
  23. F. J. García-Vidal, L. Martín-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B74, 153411 (2006). [CrossRef]
  24. S. Collin, F. Pardo, and J. L. Pelouard, “Waveguiding in nanoscale metallic apertures,” Opt. Express15, 4310–4320 (2007). [CrossRef] [PubMed]
  25. D. Woolf, M. Loncar, and F. Capasso, “The forces from coupled surface plasmon polaritons in planar waveguides,” Opt. Express17, 19996–20011 (2009). [CrossRef] [PubMed]
  26. A. D. Rakić, A. B. Djurišíc, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt.37, 5271–5283 (1998). [CrossRef]
  27. J. Bravo-Abad, F. García-Vidal, and L. Martín-Moreno, “Resonant transmission of light through finite chains of subwavelength holes in a metallic film,” Phys. Rev. Lett.93, 227401 (2004). [CrossRef] [PubMed]
  28. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature493, 195–199 (2013). [CrossRef] [PubMed]
  29. H. T. Miyazaki, H. Miyazaki, Y. Jimba, Y. Kurokawa, N. Shinya, and K. Miyano, “Light diffraction from a bilayer lattice of microspheres enhanced by specular resonance,” J. Appl. Phys.95, 793–805 (2004). [CrossRef]
  30. Z. Ku, J. Zhang, and S. Brueck, “Bi-anisotropy of multiple-layer fishnet negative-index metamaterials due to angled sidewalls,” Opt. Express17, 6782–6789 (2009). [CrossRef] [PubMed]
  31. T. Nomura, K. Sato, K. Taguchi, T. Kashiwa, and S. Nishiwaki, “Structural topology optimization for the design of broadband dielectric resonator antennas using the finite difference time domain technique,” Int. J. for Numer. Meth. Eng.71, 1261–1296 (2007). [CrossRef]
  32. D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nature Photonics4, 466–470 (2010). [CrossRef]
  33. H. Yoshida, T. Matsui, A. Miura, N. Ikeda, M. Ochiai, Y. Sugimoto, H. Fujikawa, and M. Ozaki, “Uniform liquid crystal alignment on metallic nanohole arrays by vapor-phase deposition of silane coupling agent,” Opt. Mater. Express2, 893–899 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited