OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 6180–6185

Monte Carlo study of terahertz difference frequency generation in quantum cascade lasers

Christian Jirauschek, Alpar Matyas, Paolo Lugli, and Markus-Christian Amann  »View Author Affiliations


Optics Express, Vol. 21, Issue 5, pp. 6180-6185 (2013)
http://dx.doi.org/10.1364/OE.21.006180


View Full Text Article

Enhanced HTML    Acrobat PDF (768 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an extended ensemble Monte Carlo approach, allowing for the self-consistent modeling of terahertz difference frequency generation in quantum cascade lasers. Our simulations are validated against available experimental data for a current room temperature design. Tera-hertz output powers in the mW range are predicted for ideal light extraction.

© 2013 OSA

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3430) Lasers and laser optics : Laser theory
(190.2620) Nonlinear optics : Harmonic generation and mixing
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: January 17, 2013
Revised Manuscript: February 20, 2013
Manuscript Accepted: February 23, 2013
Published: March 4, 2013

Citation
Christian Jirauschek, Alpar Matyas, Paolo Lugli, and Markus-Christian Amann, "Monte Carlo study of terahertz difference frequency generation in quantum cascade lasers," Opt. Express 21, 6180-6185 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-5-6180


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Belkin, F. Capasso, A. Belyanin, D. Sivco, A. Cho, D. Oakley, C. Vineis, and G. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics1, 288–292 (2007). [CrossRef]
  2. M. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett.92, 201101 (2008). [CrossRef]
  3. C. Pflügl, M. Belkin, Q. Wang, M. Geiser, A. Belyanin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Surface-emitting terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett.93, 161110 (2008). [CrossRef]
  4. Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Room temperature single-mode terahertz sources based on intracavity difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett.99, 131106 (2011). [CrossRef]
  5. K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett.100, 251104 (2012). [CrossRef]
  6. S. Fathololoumi, E. Dupont, C. Chan, Z. Wasilewski, S. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. Liu, “Terahertz quantum cascade lasers operating up to ∼200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express20, 3866–3876 (2012). [CrossRef] [PubMed]
  7. B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “High-power terahertz quantum-cascade lasers,” Electron. Lett.42, 89–90 (2006). [CrossRef]
  8. R. C. Iotti and F. Rossi, “Carrier thermalization versus phonon-assisted relaxation in quantum-cascade lasers: A Monte Carlo approach,” Appl. Phys. Lett.78, 2902–2904 (2001). [CrossRef]
  9. X. Gao, D. Botez, and I. Knezevic, “X-valley leakage in GaAs-based midinfrared quantum cascade lasers: A Monte Carlo study,” J. Appl. Phys.101, 063101 (2007). [CrossRef]
  10. A. Mátyás, P. Lugli, and C. Jirauschek, “Photon-induced carrier transport in high efficiency midinfrared quantum cascade lasers,” J. Appl. Phys.110, 013108 (2011). [CrossRef]
  11. R. Köhler, R. C. Iotti, A. Tredicucci, and F. Rossi, “Design and simulation of terahertz quantum cascade lasers,” Appl. Phys. Lett.79, 3920–3922 (2001). [CrossRef]
  12. H. Callebaut, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Analysis of transport properties of terahertz quantum cascade lasers,” Appl. Phys. Lett.83, 207–209 (2003). [CrossRef]
  13. O. Bonno, J.-L. Thobel, and F. Dessenne, “Modeling of electron-electron scattering in Monte Carlo simulation of quantum cascade lasers,” J. Appl. Phys.97, 043702 (2005). [CrossRef]
  14. J. T. Lü and J. C. Cao, “Coulomb scattering in the Monte Carlo simulation of terahertz quantum-cascade lasers,” Appl. Phys. Lett.89, 211115 (2006). [CrossRef]
  15. C. Jirauschek, G. Scarpa, P. Lugli, M. S. Vitiello, and G. Scamarcio, “Comparative analysis of resonant phonon THz quantum cascade lasers,” J. Appl. Phys.101, 086109 (2007). [CrossRef]
  16. A. Mátyás, M. Belkin, P. Lugli, and C. Jirauschek, “Temperature performance analysis of terahertz quantum cascade lasers: Vertical versus diagonal designs,” Appl. Phys. Lett.96, 201110 (2010).
  17. C. Jirauschek, “Monte Carlo study of carrier-light coupling in terahertz quantum cascade lasers,” Appl. Phys. Lett.96, 011103 (2010). [CrossRef]
  18. C. Jirauschek, “Monte Carlo study of intrinsic linewidths in terahertz quantum cascade lasers,” Opt. Express18, 25922–25927 (2010). [CrossRef] [PubMed]
  19. Y. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, 1984).
  20. C. Jirauschek and P. Lugli, “Monte-Carlo-based spectral gain analysis for terahertz quantum cascade lasers,” J. Appl. Phys.105, 123102 (2009). [CrossRef]
  21. C. Jirauschek, “Accuracy of transfer matrix approaches for solving the effective mass Schrödinger equation,” IEEE J. Quantum Electron.45, 1059–1067 (2009). [CrossRef]
  22. G. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  23. N. Bloembergen, Nonlinear Optics (World Scientific, 1996).
  24. C. Jirauschek, A. Matyas, and P. Lugli, “Modeling bound-to-continuum terahertz quantum cascade lasers: The role of Coulomb interactions,” J. Appl. Phys.107, 013104 (2010). [CrossRef]
  25. K. Chiang, “Performance of the effective-index method for the analysis of dielectric waveguides,” Opt. Lett.16, 714–716 (1991). [CrossRef] [PubMed]
  26. J. Butler and J. Zoroofchi, “Radiation fields of GaAs-(AlGa)As injection lasers,” IEEE J. Quantum Electron.10, 809–815 (1974). [CrossRef]
  27. S. Kohen, B. S. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys.97, 053106 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited