OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 6205–6212

Generating polarization-entangled photon pairs using cross-spliced birefringent fibers

Evan Meyer-Scott, Vincent Roy, Jean-Philippe Bourgoin, Brendon L. Higgins, Lynden K. Shalm, and Thomas Jennewein  »View Author Affiliations

Optics Express, Vol. 21, Issue 5, pp. 6205-6212 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1771 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a novel polarization-entangled photon-pair source based on standard birefringent polarization-maintaining optical fiber. The source consists of two stretches of fiber spliced together with perpendicular polarization axes, and has the potential to be fully fiber-based, with all bulk optics replaced with in-fiber equivalents. By modelling the temporal walk-off in the fibers, we implement compensation necessary for the photon creation processes in the two stretches of fiber to be indistinguishable. Our source subsequently produces a high quality entangled state having (92.2 ± 0.2) % fidelity with a maximally entangled Bell state.

© 2013 OSA

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(270.0270) Quantum optics : Quantum optics

ToC Category:
Quantum Optics

Original Manuscript: January 18, 2013
Revised Manuscript: February 20, 2013
Manuscript Accepted: February 21, 2013
Published: March 5, 2013

Evan Meyer-Scott, Vincent Roy, Jean-Philippe Bourgoin, Brendon L. Higgins, Lynden K. Shalm, and Thomas Jennewein, "Generating polarization-entangled photon pairs using cross-spliced birefringent fibers," Opt. Express 21, 6205-6212 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, “Violation of Bell’s inequality under strict Einstein locality conditions,” Phys. Rev. Lett.81(23), 5039–5043 (1998). [CrossRef]
  2. T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X.-S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, and A. Zeilinger, “Feasibility of 300 km quantum key distribution with entangled states,” New J. of Phys.11(8), 085002 (2009). [CrossRef]
  3. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science306(5700), 1330–1336 (2004). [CrossRef] [PubMed]
  4. E. Martin-Lopez, A. Laing, T. Lawson, R. Alvarez, X.-Q. Zhou, and J. L. O’Brien, “Experimental realization of Shor’s quantum factoring algorithm using qubit recycling,” Nat. Photon.6(11), 773–776 (2012). [CrossRef]
  5. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” arXiv:1209.5774 (2012).
  6. A. Lamas-Linares, B. Calkins, N. A. Tomlin, T. Gerrits, A. E. Lita, J. Beyer, R. P. Mirin, and S. W. Nam, “Nanosecond-scale timing jitter in transition edge sensors at telecom and visible wavelengths,” arXiv:.5721 (2012).
  7. X. Li, C. Liang, K. Fook Lee, J. Chen, P. L. Voss, and P. Kumar, “Integrable optical-fiber source of polarization-entangled photon pairs in the telecom band,” Phys. Rev. A73, 052301 (2006). [CrossRef]
  8. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A60(2), R773–R776 (1999). [CrossRef]
  9. Following the trend of culinary nomenclature, we informally refer to our cross-spliced source as a “sausage” source.
  10. J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, “Schemes for fibre-based entanglement generation in the telecom band,” New J. Phys.9(8), 289 (2007). [CrossRef]
  11. M. Medic, J. B. Altepeter, M. A. Hall, M. Patel, and P. Kumar, “Fiber-based telecommunication-band source of degenerate entangled photons,” Opt. Lett.35(6), 802–804 (2010). [CrossRef] [PubMed]
  12. C. Liang, K. F. Lee, T. Levin, J. Chen, and P. Kumar, “Ultra stable all-fiber telecom-band entangled photon-pair source for turnkey quantum communication applications,” Opt. Express14(15), 6936–6941 (2006). [CrossRef] [PubMed]
  13. M. A. Hall, J. B. Altepeter, and P. Kumar, “Drop-in compatible entanglement for optical-fiber networks,” Opt. Express17(17), 14558–14566 (2009). [CrossRef] [PubMed]
  14. Q. Zhou, W. Zhang, P. Wang, Y. Huang, and J. Peng, “Polarization entanglement generation at 1.5 μm based on walk-off effect due to fiber birefringence,” Opt. Lett.37(10), 1679–1681 (2012). [CrossRef] [PubMed]
  15. J. Fan, M. D. Eisaman, and A. Migdall, “Bright phase-stable broadband fiber-based source of polarization-entangled photon pairs,” Phys. Rev. A76, 043836 (2007). [CrossRef]
  16. B. Fang, O. Cohen, J. Moreno, and V. O. Lorenz, “Polarization-entangled photon generation in a standard polarization-maintaining fiber,” in CLEO: QELS-Fundamental Science, p. QF3F.5 (Optical Society of America, 2012).
  17. E. Brainis, “Four-photon scattering in birefringent fibers,” Phys. Rev. A79, 023840 (2009). [CrossRef]
  18. Other forms of vector phase-matching with cross-polarized pump photons or cross-polarized signal/idler photons are not relevant here.
  19. B. J. Smith, P. Mahou, O. Cohen, J. S. Lundeen, and I. A. Walmsley, “Photon pair generation in birefringent optical fibers,” Opt. Express17(26), 23589–23602 (2009). [CrossRef]
  20. M. Halder, J. Fulconis, B. Cemlyn, A. Clark, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Nonclassical 2-photon interference with separate intrinsically narrowband fibre sources,” Opt. Express17(6), 4670–4676 (2009). [CrossRef] [PubMed]
  21. A. Clark, B. Bell, J. Fulconis, M. Halder, B. Cemlyn, O. Alibart, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Intrinsically narrowband pair photon generation in microstructured fibres,” New J. Phys.13(6), 065009 (2011). [CrossRef]
  22. O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett.102, 123603 (2009). [CrossRef] [PubMed]
  23. Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A75, 023803 (2007). [CrossRef]
  24. B. Fang, O. Cohen, J. B. Moreno, and V. O. Lorenz, “Standard polarization-maintaining fiber as a photon source for quantum communication applications,” in Laser Science, p. LTu5J.2 (Optical Society of America, 2012).
  25. C. Söller, O. Cohen, B. J. Smith, I. A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A83, 03806 (2011). [CrossRef]
  26. P. Trojek, “Efficient Generation of photonic entanglement and multiparty quantum communication,” Ph.D. thesis, Ludwig-Maximilians-Universität München (2007).
  27. P. Trojek and H. Weinfurter, “Collinear source of polarization-entangled photon pairs at nondegenerate wavelengths,” Appl. Phys. Lett.92(21), 211103 (2008). [CrossRef]
  28. Due to energy conservation, the phase dependence on the idler wavelength is fully determined by the signal and pump wavelengths.
  29. J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron.12(2), 233–244 (2006). [CrossRef]
  30. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol.14(1), 58–65 (1996). [CrossRef]
  31. A. B. U’Ren, R. K. Erdmann, M. de la Cruz-Gutierrez, and I. A. Walmsley, “Generation of two-photon states with an arbitrary degree of entanglement via nonlinear crystal superlattices,” Phys. Rev. Lett.97, 223602 (2006). [CrossRef]
  32. J. Fan, A. Dogariu, and L. J. Wang, “Generation of correlated photon pairs in a microstructure fiber,” Opt. Lett.30(12), 1530–1532 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited