OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 6233–6242

Low-loss hollow-core fibers with improved single-modedness

John M. Fini, Jeffrey W. Nicholson, Robert S. Windeler, Eric M. Monberg, Linli Meng, Brian Mangan, Anthony DeSantolo, and Frank V. DiMarcello  »View Author Affiliations


Optics Express, Vol. 21, Issue 5, pp. 6233-6242 (2013)
http://dx.doi.org/10.1364/OE.21.006233


View Full Text Article

Enhanced HTML    Acrobat PDF (1717 KB) | SpotlightSpotlight on Optics





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Hollow-core fibers (HCFs) are a revolution in light guidance with enormous potential. They promise lower loss than any other waveguide, but have not yet achieved this potential because of a tradeoff between loss and single-moded operation. This paper demonstrates progress on a strategy to beat this tradeoff: we measure the first hollow-core fiber employing Perturbed Resonance for Improved Single Modedness (PRISM), where unwanted modes are robustly stripped away. The fiber has fundamental-mode loss of 7.5 dB/km, while other modes of the 19-lattice-cell core see loss >3000dB/km. This level of single-modedness is far better than previous 19-cell or 7-cell HCFs, and even comparable to some commercial solid-core fibers. Modeling indicates this measured loss can be improved. By breaking the connection between core size and single-modedness, this first PRISM demonstration opens a new path towards achieving the low-loss potential of HCFs.

© 2013 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2400) Fiber optics and optical communications : Fiber properties

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: January 29, 2013
Revised Manuscript: February 22, 2013
Manuscript Accepted: February 25, 2013
Published: March 5, 2013

Virtual Issues
April 5, 2013 Spotlight on Optics

Citation
John M. Fini, Jeffrey W. Nicholson, Robert S. Windeler, Eric M. Monberg, Linli Meng, Brian Mangan, Anthony DeSantolo, and Frank V. DiMarcello, "Low-loss hollow-core fibers with improved single-modedness," Opt. Express 21, 6233-6242 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-5-6233


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band Gap guidance of light in air,” Science285(5433), 1537–1539 (1999) (DOI:10.1126/science.285.5433.1537). [CrossRef] [PubMed]
  2. N. Venkataraman, M. T. Gallagher, C. M. Smith, D. Muller, J. A. West, K. W. Koch, and J. C. Fajardo, “Low loss (13 dB/km) air core photonic band-gap fibre,” 28th European Conference on Optical Communication, 2002. ECOC 2002. vol.5, no., 1–2, 8–12 Sept. (2002).
  3. W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres,” Nature424(6948), 511–515 (2003). [CrossRef] [PubMed]
  4. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature424(6949), 657–659 (2003). [CrossRef] [PubMed]
  5. P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express13(1), 236–244 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-1-236 . [CrossRef] [PubMed]
  6. M. N. Petrovich, F. Poletti, A. van Brakel, and D. J. Richardson, “Robustly single mode hollow core photonic bandgap fiber,” Opt. Express16(6), 4337–4346 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-6-4337 . [CrossRef] [PubMed]
  7. S. H. Aref, R. Amezcua-Correa, J. P. Carvalho, O. Frazão, P. Caldas, J. L. Santos, F. M. Araújo, H. Latifi, F. Farahi, L. A. Ferreira, and J. C. Knight, “Modal interferometer based on hollow-core photonic crystal fiber for strain and temperature measurement,” Opt. Express17(21), 18669–18675 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-21-18669 . [CrossRef] [PubMed]
  8. C. de Matos, J. Taylor, T. Hansen, K. Hansen, and J. Broeng, “All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber,” Opt. Express11(22), 2832–2837 (2003). [CrossRef] [PubMed]
  9. N. V. Wheeler, M. N. Petrovich, R. Slavik, N. K. Baddela, E. R. Numkam Fokoua, J. R. Hayes, D. Gray, F. Poletti, and D. Richardson, “Wide-bandwidth, low-loss, 19-cell hollow core photonic band gap fiber and its potential for low latency data transmission,” in National Fiber Optic Engineers Conference, OSA Technical Digest (Optical Society of America, 2012), paper PDP5A.2.
  10. J. W. Nicholson, L. Meng, J. M. Fini, R. S. Windeler, A. DeSantolo, E. Monberg, F. DiMarcello, Y. Dulashko, M. Hassan, and R. Ortiz, “Measuring higher-order modes in a low-loss, hollow-core, photonic-bandgap fiber,” Opt. Express20(18), 20494–20505 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-18-20494 . [CrossRef] [PubMed]
  11. J. M. Fini, “Suppression of higher-order modes in aircore microstructure fiber designs,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CMM4. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2006-CMM4 [CrossRef]
  12. J. M. Fini, “Aircore microstructure fibers with suppressed higher-order modes,” Opt. Express14(23), 11354–11361 (2006). [CrossRef] [PubMed]
  13. K. Saitoh, N. J. Florous, T. Murao, and M. Koshiba, “Design of photonic band gap fibers with suppressed higher-order modes: Towards the development of effectively single mode large hollow-core fiber platforms,” Opt. Express14(16), 7342–7352 (2006). [CrossRef] [PubMed]
  14. L. Meng, J. M. Fini, J. W. Nicholson, R. S. Windeler, A. DeSantolo, E. Monberg, F. DiMarcello, M. Hassan, and R. Ortiz, “Bend tunable coupling in dual-hollow-core photonic bandgap fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OTh1H.4. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2012-OTh1H.4
  15. D. Marcuse, “Influence of curvature on the losses of doubly clad fibers,” Appl. Opt.21(23), 4208–4213 (1982). [CrossRef] [PubMed]
  16. J. M. Fini, B. Zhu, T. F. Taunay, and M. F. Yan, “Statistics of crosstalk in bent multicore fibers,” Opt. Express18(14), 15122–15129 (2010). [CrossRef] [PubMed]
  17. M. Li, J. A. West, and K. W. Koch, “Modeling effects of structural distortions on air-core photonic bandgap fibers,” J. Lightwave Technol.25(9), 2463–2468 (2007). [CrossRef]
  18. F. Poletti, M. N. Petrovich, R. Amezcua-Correa, N. G. Broderick, T. M. Monro, and D. J. Richardson, “Advances and limitations in the modeling of fabricated photonic bandgap fibers,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OFC2. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2006-OFC2
  19. S. Guo, F. Wu, S. Albin, H. Tai, and R. Rogowski, “Loss and dispersion analysis of microstructured fibers by finite-difference method,” Opt. Express12(15), 3341–3352 (2004). [CrossRef] [PubMed]
  20. J. Jasapara and A. D. Yablon, “Spectrogram approach to S2 fiber mode analysis to distinguish between dispersion and distributed scattering,” Opt. Lett.37(18), 3906–3908 (2012), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-37-18-3906 . [CrossRef] [PubMed]
  21. J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” J. Sel. Top. Quant. Electron.15(1), 61–70 (2009). [CrossRef]
  22. J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express16(10), 7233–7243 (2008). [CrossRef] [PubMed]
  23. J. West, C. Smith, N. Borrelli, D. Allan, and K. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express12(8), 1485–1496 (2004). [CrossRef] [PubMed]
  24. R. Amezcua-Correa, F. Gèrôme, S. G. Leon-Saval, N. G. R. Broderick, T. A. Birks, and J. C. Knight, “Control of surface modes in low loss hollow-core photonic bandgap fibers,” Opt. Express16(2), 1142–1149 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (3933 KB)      QuickTime
» Media 2: MOV (3759 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited