OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 6243–6248

Complementarity between fluorescence and reflection in photoluminescent cholesteric liquid crystal devices

Jang-Kyum Kim, Suk-Hwan Joo, and Jang-Kun Song  »View Author Affiliations

Optics Express, Vol. 21, Issue 5, pp. 6243-6248 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2106 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The combination of photoluminescence (PL) and cholesteric liquid crystal (CLC) provides interesting complementary features for an optimized display application. Distortion of the Bragg lattice of CLCs decreases selective reflection but increases fluorescence intensity; recovery of a uniform lattice in turn results in increased reflection and decreased fluorescence. This complementary relationship between the fluorescence and the Bragg reflection gives rise to self-compensations for color shifts due to either dynamic slow response of CLC helix or mismatch of oblique incidence of light with respect to the helical axis. These color shifts have long been intrinsic unsolved limitations of conventional CLC devices. Thus, the complementary coupling between the fluorescence and the CLC Bragg reflections plays an important role in improving the color performance and the quality of moving images.

© 2013 OSA

OCIS Codes
(230.3720) Optical devices : Liquid-crystal devices
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Devices

Original Manuscript: January 30, 2013
Revised Manuscript: February 25, 2013
Manuscript Accepted: February 25, 2013
Published: March 5, 2013

Jang-Kyum Kim, Suk-Hwan Joo, and Jang-Kun Song, "Complementarity between fluorescence and reflection in photoluminescent cholesteric liquid crystal devices," Opt. Express 21, 6243-6248 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: Drive scheme and contrast,” Appl. Phys. Lett.64(15), 1905–1907 (1994). [CrossRef]
  2. D. M. Makow, “Peak reflectance and color gamut of superimposed left and right-handed cholesteric liquid crystals,” Appl. Opt.19(8), 1274–1277 (1980). [CrossRef] [PubMed]
  3. M. Mitov and N. Dessaud, “Going beyond the reflectance limit of cholesteric liquid crystals,” Nat. Mater.5(5), 361–364 (2006). [CrossRef] [PubMed]
  4. D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys.76(2), 1331–1333 (1994). [CrossRef]
  5. P. Watson, V. Sergan, J. E. Anderson, J. Ruth, and P. J. Bos, “Characteristic times in the homeotropic to planar transition in cholesteric liquid crystals,” Liq. Cryst.26(5), 731–736 (1999). [CrossRef]
  6. Y. C. Yang, M. H. Lee, J. E. Kim, H. Y. Park, and J. C. Lee, “Theoretical Study on the Homeotropic-Transient Planar Transition of Cholesteric Liquid Crystals,” Jpn. J. Appl. Phys.40(Part 1, No. 2A), 649–653 (2001). [CrossRef]
  7. W. D. St. John, Z. J. Lu, and J. W. Doane, “Characterization of reflective cholesteric liquid-crystal displays,” J. Appl. Phys.78, 5253–5265 (1995). [CrossRef]
  8. W. D. S. John, W. J. Fritz, Z. J. Lu, and D. K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics51(2), 1191–1198 (1995).
  9. L. J. Yu and M. M. Labes, “Fluorescent liquid-crystal display utilizing an electric-field-induced cholesteric-nematic transition,” Appl. Phys. Lett.31(11), 719–720 (1977). [CrossRef]
  10. R. W. Filas and M. M. Labes, “Homogeneous-homeotropic fluorescent liquid crystal cells,” J. Appl. Phys.52(6), 3949–3953 (1981). [CrossRef]
  11. S. Sato and M. M. Labes, “Multicolor fluorescent display by scattering states in liquid crystals,” J. Appl. Phys.52(6), 3941–3948 (1981). [CrossRef]
  12. M. Grell and D. D. C. Bradley, “Polarized luminescence from oriented molecular materials,” Adv. Mater.11(11), 895–905 (1999). [CrossRef]
  13. S. Chen, D. Katsis, A. Schmid, J. Mastrangelo, T. Tsutsui, and T. Blanton, “Circularly polarized light generated by photoexcitation of luminophores in glassy liquid-crystal films,” Nature397(6719), 506–508 (1999). [CrossRef]
  14. K. L. Woon, M. O'Neill, G. J. Richards, M. P. Aldred, S. M. Kelly, and A. M. Fox, “Highly Circularly Polarized Photoluminescence over a Broad Spectral Range from a Calamitic, Hole‐Transporting, Chiral Nematic Glass and from an Indirectly Excited Dye,” Adv. Mater.15(18), 1555–1558 (2003). [CrossRef]
  15. Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable Lasing from a Cholesteric Liquid Crystal Film Embedded With a Liquid Crystal Nanopore Network,” Adv. Mater.23(46), 5498–5501 (2011). [CrossRef] [PubMed]
  16. R. Yamaguchi, H. Nagato, H. Hafiz, and S. Sato, “Sensitized Fluorescence of Dichroic Dye in Emissive Type Liquid Crystal Displays,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)410(1), 495–504 (2004). [CrossRef]
  17. N. Ohta and A. R. Robertson, Colorimetry, Fundamentals and Applications (John Wiley & Sons, Ltd, Chichester, England, 2005).
  18. J. K. Song, J. K. Vij, and B. K. Sadashiva, “Conoscopy of chiral smectic liquid crystal cells,” J. Opt. Soc. Am. A25(7), 1820–1827 (2008). [CrossRef] [PubMed]
  19. P. Yeh, “Electromagnetic propagation in birefringent layered media,” J. Opt. Soc. Am.69(5), 742–756 (1979). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

Supplementary Material

» Media 1: MOV (2744 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited