OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 6295–6303

High performance mechanisms of near-infrared photodetectors with microcrystalline SiGe films deposited using laser-assisted plasma enhanced chemical vapor deposition system

Ching-Ting Lee and Min-Yen Tsai  »View Author Affiliations

Optics Express, Vol. 21, Issue 5, pp. 6295-6303 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1930 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The SiH4 and GeH4 reactant gases used for depositing microcrystalline SiGe films could be simultaneously decomposed when acted cooperatively on the plasma and the assistant CO2 laser in the laser-assisted plasma enhanced chemical vapor deposition system. The carrier mobility of the 80 W laser-assisted SiGe films was significantly increased to 66.8 cm2/V-s compared with 2.22 cm2/V-s of the non-laser-assisted SiGe films. The performances of the resulting p-Si/i-SiGe/n-Si near-infrared photodetectors were improved due to the high quality and high carrier mobility of the laser-assisted SiGe films. The maximum photoresponsivity and the maximum quantum efficiency of the photodetectors with 80 W laser-assisted SiGe films were respectively improved to 0.47 A/W and 68.5% in comparison with 0.31 A/W and 46.5% of the photodetectors with non-laser-assisted SiGe films.

© 2013 OSA

OCIS Codes
(160.4670) Materials : Optical materials
(230.5160) Optical devices : Photodetectors
(310.6845) Thin films : Thin film devices and applications

ToC Category:

Original Manuscript: January 29, 2013
Revised Manuscript: February 18, 2013
Manuscript Accepted: February 22, 2013
Published: March 5, 2013

Ching-Ting Lee and Min-Yen Tsai, "High performance mechanisms of near-infrared photodetectors with microcrystalline SiGe films deposited using laser-assisted plasma enhanced chemical vapor deposition system," Opt. Express 21, 6295-6303 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. T. Lee and H. Y. Lee, “Surface passivated function of GaAs MSM-PDs using photoelectrochemical oxidation method,” IEEE Photon. Technol. Lett.17(2), 462–464 (2005). [CrossRef]
  2. C. T. Lee, C. C. Lin, H. Y. Lee, and P. S. Chen, “Changes in surface state density due to chlorine treatment in GaN Schottky ultraviolet photodetectors,” J. Appl. Phys.103(9), 094504 (2008). [CrossRef]
  3. A. Asgari and S. Razi, “High performances III-Nitride quantum dot infrared photodetector operating at room temperature,” Opt. Express18(14), 14604–14615 (2010). [CrossRef] [PubMed]
  4. M. L. Lee, T. S. Mue, F. W. Huang, J. H. Yang, and J. K. Sheu, “High-performance GaN metal-insulator-semiconductor ultraviolet photodetectors using gallium oxide as gate layer,” Opt. Express19(13), 12658–12663 (2011). [CrossRef] [PubMed]
  5. S. Luryi, A. Kastalsky, and J. C. Bean, “New infrared detector on a silicon chip,” IEEE Trans. Electron. Dev.31(9), 1135–1139 (1984). [CrossRef]
  6. J. C. Bean, “Strained-layer epitaxy of germanium-silicon alloys,” Science230(4722), 127–131 (1985). [CrossRef] [PubMed]
  7. J. C. Bean, T. T. Sheng, L. C. Feldman, A. T. Fiory, and R. T. Lynch, “Pseudomorphic growth of GexSi1-x on silicon by molecular beam epitaxy,” Appl. Phys. Lett.44(1), 102–104 (1984). [CrossRef]
  8. A. T. Fiory, J. C. Bean, L. C. Feldman, and I. K. Robinson, “Commensurate and incommensurate structures in molecular beam epitaxially grown GexSi1-x films on Si(100),” J. Appl. Phys.56(4), 1227–1229 (1984). [CrossRef]
  9. T. E. Vandervelde, K. Sun, J. L. Merz, A. Kubis, R. Hull, T. L. Pernell, and J. C. Bean, “The effect of two-temperature capping on germanium/silicon quantum dots and analysis of superlattices so composed,” J. Appl. Phys.99(12), 124301 (2006). [CrossRef]
  10. A. J. Kubis, T. E. Vandervelde, J. C. Bean, D. N. Dunn, and R. Hull, “Analysis of the three-dimensional ordering of epitaxial Ge quantum dots using focused ion beam tomography,” Appl. Phys. Lett.88(26), 263103 (2006). [CrossRef]
  11. G. H. Bauer, F. Voigt, R. Carius, M. Krause, R. Bruggemann, and T. Unold, “Electronic properties of microcrystalline SiGe-thin films by hall-experiments and photo- and dark-transport,” J. Non-Cryst. Solids299–302(1), 153–157 (2002). [CrossRef]
  12. J. N. Milgram, J. Wojcik, P. Mascher, and A. P. Knights, “Optically pumped Si nanocrystal emitter integrated with low loss silicon nitride waveguides,” Opt. Express15(22), 14679–14688 (2007). [CrossRef] [PubMed]
  13. X. Cao, H. S. Povolny, and X. Deng, “Hot-wire deposition of hydrogenated nanocrystalline SiGe films for thin-film Si based solar cells,” in Record of the IEEE Photovoltaic Specialists Conf. (2005), pp. 1500–1503.
  14. T. Matsui, C. W. Chang, T. Takada, M. Isomura, H. Fujiwara, and M. Kondo, “Microcrystalline Si1-xGex solar cells exhibiting enhanced infrared response with reduced absorber thickness,” Appl. Phys. Express1(3), 031501 (2008). [CrossRef]
  15. L. K. Teh, W. K. Choi, L. K. Bera, and W. K. Chim, “Structural characterization of polycrystalline SiGe thin film,” Solid-State Electron.45(11), 1963–1966 (2001). [CrossRef]
  16. T. C. Tsai, L. Z. Yu, and C. T. Lee, “Electroluminescence emission of crystalline silicon nanoclusters grown at a low temperature,” Nanotechnology18(27), 275707 (2007). [CrossRef]
  17. W. B. Steward and H. H. Nielsen, “The Infrared absorption spectrum of silane,” Phys. Rev.47(11), 828–832 (1935). [CrossRef]
  18. W. B. Steward and H. H. Nielsen, “The Infrared absorption spectrum of germane,” Phys. Rev.48(11), 861–864 (1935). [CrossRef]
  19. R. Biswas, I. Kwon, and C. M. Soukoulis, “Mechanism for the Staebler-Wronski effect in a-Si:H,” Phys. Rev. B Condens. Matter44(7), 3403–3406 (1991). [CrossRef] [PubMed]
  20. E. V. Jelenković, K. Y. Tong, W. Y. Cheung, I. H. Wilson, S. P. Wong, and M. C. Poon, “Low temperature doping of poly-SiGe films with boron by co-sputtering,” Thin Solid Films368(1), 55–60 (2000). [CrossRef]
  21. D. Dasgupta, F. Demichelis, C. F. Pirri, and A. Tagliaferro, “π bands and gap states from optical absorption and electron-spin-resonance studies on amorphous carbon and amorphous hydrogenated carbon films,” Phys. Rev. B Condens. Matter43(3), 2131–2135 (1991). [CrossRef] [PubMed]
  22. M. A. Ghazala, W. Beyer, and H. Wagner, “Long-term stability of hydrogenated amorphous germanium measured by infrared absorption,” J. Appl. Phys.70(8), 4540–4543 (1991). [CrossRef]
  23. A. A. Langford, M. L. Fleet, B. P. Nelson, W. A. Lanford, and N. Maley, “Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon,” Phys. Rev. B Condens. Matter45(23), 13367–13377 (1992). [CrossRef] [PubMed]
  24. K. M. McNamara, B. E. Williams, K. K. Gleason, and B. E. Scruggs, “Identification of defects and impurities in chemical-vapor deposited diamond through infrared,” J. Appl. Phys.76(4), 2466–2472 (1994). [CrossRef]
  25. H. Shanks, C. J. Fang, L. Ley, M. Cardona, F. J. Demond, and S. Kalbitzer, “Infrared spectrum and structure of hydrogenated amorphous silicon,” Phys. Status Solidi, B Basic Res.100(1), 43–56 (1980). [CrossRef]
  26. M. Kumru, “A comparison of the optical, IR, electron spin resonance and conductivity properties of a-Ge1-xCx:H with a a-Ge:H and a-Ge thin films prepared by R.F. sputtering,” Thin Solid Films198(1–2), 75–84 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited