OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 6321–6326

Optical attenuation coefficient in individual ZnO nanowires

Anree Little, Abigail Hoffman, and Nancy M. Haegel  »View Author Affiliations

Optics Express, Vol. 21, Issue 5, pp. 6321-6326 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1414 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Attenuation coefficient measurements for the propagation of bandedge luminescence are made on individual ZnO nanowires by combining the localized excitation capability of a scanning electron microscope (SEM) with near-field scanning optical microscopy (NSOM) to record the distribution and intensity of wave-guided emission. Measurements were made for individual nanostructures with triangular cross-sections ranging in diameter from 680 to 2300 nm. The effective attenuation coefficient shows an inverse dependence on nanowire diameter (d−1), indicating scattering losses due to non-ideal waveguiding behavior.

© 2013 OSA

OCIS Codes
(130.5990) Integrated optics : Semiconductors
(250.1500) Optoelectronics : Cathodoluminescence
(290.0290) Scattering : Scattering
(160.4236) Materials : Nanomaterials
(180.4243) Microscopy : Near-field microscopy

ToC Category:

Original Manuscript: November 16, 2012
Revised Manuscript: December 15, 2012
Manuscript Accepted: December 17, 2012
Published: March 6, 2013

Anree Little, Abigail Hoffman, and Nancy M. Haegel, "Optical attenuation coefficient in individual ZnO nanowires," Opt. Express 21, 6321-6326 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Könenkamp, R. C. Word, and C. Schlegel, “Vertical nanowire light-emitting diode,” Appl. Phys. Lett.85(24), 6004–6006 (2004). [CrossRef]
  2. J. Bao, M. A. Zimmler, F. Capasso, X. Wang, and Z. F. Ren, “Broadband ZnO single-nanowire light-emitting diode,” Nano Lett.6(8), 1719–1722 (2006). [CrossRef] [PubMed]
  3. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001). [CrossRef] [PubMed]
  4. M. A. Zimmler, J. Bao, F. Capasso, S. Muller, and C. Ronning, “Laser action in nanowires: observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett.93(5), 051101 (2008). [CrossRef]
  5. P. J. Pauzauskie and P. Yang, “Nanowire photonics,” Mater. Today9(10), 36–45 (2006). [CrossRef]
  6. M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, and D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology20(33), 332001 (2009). [CrossRef] [PubMed]
  7. Z. L. Wang, “Zinc oxide nanostructures: growth, properties and applications,” J. Phys. Condens. Matter16(25), R829–R858 (2004). [CrossRef]
  8. X. Wang, J. Song, and Z. L. Wang, “Single crystal nanocastles of ZnO,” Chem. Phys. Lett.424(1-3), 86–90 (2006). [CrossRef]
  9. M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science305(5688), 1269–1273 (2004). [CrossRef] [PubMed]
  10. X. D. Wang, J. H. Song, and Z. L. Wang, “Nanowire and nanobelt arrays of zinc oxide from synthesis to properties and to novel devices,” J. Mater. Chem.17(8), 711–720 (2007). [CrossRef]
  11. N. M. Haegel, D. J. Chisholm, and R. A. Cole, “Imaging transport in nanowires using near-field detection of light,” J. Cryst. Growth352(1), 218–223 (2012). [CrossRef]
  12. N. M. Haegel, T. J. Mills, M. Talmadge, C. Scandrett, C. L. Frenzen, H. Yoon, C. M. Fetzer, and R. R. King, “Direct imaging of anisotropic minority-carrier diffusion in ordered GaInP,” J. Appl. Phys.105(2), 023711 (2009). [CrossRef]
  13. L. Baird, C. P. Ong, R. A. Cole, N. M. Haegel, A. A. Talin, Q. Li, and G. T. Wang, “Transport imaging for contact-free measurements of minority carrier diffusion in GaN, GaN/AlGaN and GaN/InGaN core-shell nanowires,” Appl. Phys. Lett.98(13), 132104 (2011). [CrossRef]
  14. Y. S. Park and J. R. Schneider, “Index of refraction of ZnO,” J. Appl. Phys.39(7), 3049–3052 (1968). [CrossRef]
  15. A. M. Schwartzberg, S. Aloni, T. Kuykendall, P. J. Schuck, and J. J. Urban, “Optical cavity characterization in nanowires via self-generated broad-band emission,” Opt. Express19(9), 8903–8911 (2011). [CrossRef] [PubMed]
  16. Q. Li, K. R. Westlake, M. H. Crawford, S. R. Lee, D. D. Koleske, J. J. Figiel, K. C. Cross, S. Fathololoumi, Z. Mi, and G. T. Wang, “Optical performance of top-down fabricated InGaN/GaN nanorod light emitting diode arrays,” Opt. Express19(25), 25528–25534 (2011). [CrossRef] [PubMed]
  17. M. A. Zimmler, F. Capasso, S. Muller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Technol.25(2), 024001 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited