OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 6327–6338

Efficient coherent diffractive imaging for sparsely varying objects

Yoav Shechtman, Yonina C. Eldar, Oren Cohen, and Mordechai Segev  »View Author Affiliations


Optics Express, Vol. 21, Issue 5, pp. 6327-6338 (2013)
http://dx.doi.org/10.1364/OE.21.006327


View Full Text Article

Enhanced HTML    Acrobat PDF (983 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate an efficient phase-retrieval method, allowing the recovery of features of dynamic objects that are sparsely varying – i.e. when the difference between two consecutive frames is small. The method uses redundancy in information between similar consecutive frames to recover the features more robustly than current phase-retrieval methods, and necessitates a considerably smaller number of measurements. Both of these features directly lead to shorter acquisition time, paving the way to coherent diffractive imaging of fast dynamic processes. Numerical simulations show a possible 100-fold improvement in temporal resolution over existing methods.

© 2013 OSA

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(110.1650) Imaging systems : Coherence imaging

ToC Category:
Image Processing

History
Original Manuscript: November 29, 2012
Revised Manuscript: February 15, 2013
Manuscript Accepted: February 26, 2013
Published: March 6, 2013

Citation
Yoav Shechtman, Yonina C. Eldar, Oren Cohen, and Mordechai Segev, "Efficient coherent diffractive imaging for sparsely varying objects," Opt. Express 21, 6327-6338 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-5-6327


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. M. Seibert, T. Ekeberg, F. R. N. C. Maia, M. Svenda, J. Andreasson, O. Jönsson, D. Odić, B. Iwan, A. Rocker, D. Westphal, M. Hantke, D. P. DePonte, A. Barty, J. Schulz, L. Gumprecht, N. Coppola, A. Aquila, M. Liang, T. A. White, A. Martin, C. Caleman, S. Stern, C. Abergel, V. Seltzer, J. M. Claverie, C. Bostedt, J. D. Bozek, S. Boutet, A. A. Miahnahri, M. Messerschmidt, J. Krzywinski, G. Williams, K. O. Hodgson, M. J. Bogan, C. Y. Hampton, R. G. Sierra, D. Starodub, I. Andersson, S. Bajt, M. Barthelmess, J. C. Spence, P. Fromme, U. Weierstall, R. Kirian, M. Hunter, R. B. Doak, S. Marchesini, S. P. Hau-Riege, M. Frank, R. L. Shoeman, L. Lomb, S. W. Epp, R. Hartmann, D. Rolles, A. Rudenko, C. Schmidt, L. Foucar, N. Kimmel, P. Holl, B. Rudek, B. Erk, A. Hömke, C. Reich, D. Pietschner, G. Weidenspointner, L. Strüder, G. Hauser, H. Gorke, J. Ullrich, I. Schlichting, S. Herrmann, G. Schaller, F. Schopper, H. Soltau, K. U. Kühnel, R. Andritschke, C. D. Schröter, F. Krasniqi, M. Bott, S. Schorb, D. Rupp, M. Adolph, T. Gorkhover, H. Hirsemann, G. Potdevin, H. Graafsma, B. Nilsson, H. N. Chapman, and J. Hajdu, “Single mimivirus particles intercepted and imaged with an X-ray laser,” Nature470(7332), 78–81 (2011). [CrossRef] [PubMed]
  2. J. J. Turner, X. Huang, O. Krupin, K. A. Seu, D. Parks, S. Kevan, E. Lima, K. Kisslinger, I. McNulty, R. Gambino, S. Mangin, S. Roy, and P. Fischer, “X-ray diffraction microscopy of magnetic structures,” Phys. Rev. Lett.107(3), 033904 (2011). [CrossRef] [PubMed]
  3. Y. Suzuki, A. Takeuchi, H. Takano, and H. Takenaka, “Performance test of fresnel zone plate with 50 nm outermost zone width in hard X-ray region,” Jpn. J. Appl. Phys.44(4A), 1994–1998 (2005). [CrossRef]
  4. H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Breaking the 10 nm barrier in hard-X-ray focusing,” Nat. Phys.6(2), 122–125 (2010). [CrossRef]
  5. D. Sayre, Imaging Processes and Coherence in Physics, Springer Lecture Notes in Physics, vol. 112 (Springer-Verlag, 1980), pp. 229–235.
  6. J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature400(6742), 342–344 (1999). [CrossRef]
  7. J. R. Fienup, “Reconstruction of an object from the modulus of its Fourier transform,” Opt. Lett.3(1), 27–29 (1978). [CrossRef] [PubMed]
  8. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt.21(15), 2758–2769 (1982). [CrossRef] [PubMed]
  9. A. M. Maallo, P. F. Almoro, and S. G. Hanson, “Quantization analysis of speckle intensity measurements for phase retrieval,” Appl. Opt.49(27), 5087–5094 (2010). [CrossRef] [PubMed]
  10. J. Miao, R. L. Sandberg, and C. Song, “Coherent X-ray diffraction imaging,” IEEE J. Sel. Top. Quantum Electron.18(1), 399–410 (2012). [CrossRef]
  11. H. N. Chapman, A. Barty, M. J. Bogan, S. Boutet, M. Frank, S. P. Hau-Riege, S. Marchesini, B. W. Woods, S. Bajt, W. H. Benner, R. A. London, E. Plönjes, M. Kuhlmann, R. Treusch, S. Düsterer, T. Tschentscher, J. R. Schneider, E. Spiller, T. Möller, C. Bostedt, M. Hoener, D. A. Shapiro, K. O. Hodgson, D. van der Spoel, F. Burmeister, M. Bergh, C. Caleman, G. Huldt, M. M. Seibert, F. R. N. C. Maia, R. W. Lee, A. Szöke, N. Timneanu, and J. Hajdu, “Femtosecond diffractive imaging with a soft-X-ray free-electron laser,” Nat. Phys.2(12), 839–843 (2006). [CrossRef]
  12. I. K. Robinson, I. A. Vartanyants, G. J. Williams, M. A. Pfeifer, and J. A. Pitney, “Reconstruction of the shapes of gold nanocrystals using coherent x-ray diffraction,” Phys. Rev. Lett.87(19), 195505 (2001). [CrossRef] [PubMed]
  13. S. Eisebitt, J. Lüning, W. F. Schlotter, M. Lörgen, O. Hellwig, W. Eberhardt, and J. Stöhr, “Lensless imaging of magnetic nanostructures by X-ray spectro-holography,” Nature432(7019), 885–888 (2004). [CrossRef] [PubMed]
  14. R. L. Sandberg, A. Paul, D. A. Raymondson, S. Hädrich, D. M. Gaudiosi, J. Holtsnider, R. I. Tobey, O. Cohen, M. M. Murnane, H. C. Kapteyn, C. Song, J. Miao, Y. Liu, and F. Salmassi, “Lensless diffractive imaging using tabletop coherent high-harmonic soft-X-ray beams,” Phys. Rev. Lett.99(9), 098103 (2007). [CrossRef] [PubMed]
  15. A. Barty, S. Boutet, M. J. Bogan, S. Hau-Riege, S. Marchesini, K. Sokolowski-Tinten, N. Stojanovic, R. Tobey, H. Ehrke, A. Cavalleri, S. Düsterer, M. Frank, S. Bajt, B. W. Woods, M. M. Seibert, J. Hajdu, R. Treusch, and H. N. Chapman, “Ultrafast single-shot diffraction imaging of nanoscale dynamics,” Nat. Photonics2(7), 415–419 (2008). [CrossRef]
  16. P. Hockett, C. Z. Bisgaard, O. J. Clarkin, and A. Stolow, “Time-resolved imaging of purely valence-electron dynamics during a chemical reaction,” Nat. Phys.7(8), 612–615 (2011). [CrossRef]
  17. L. M. Stadler, C. Gutt, T. Autenrieth, O. Leupold, S. Rehbein, Y. Chushkin, and G. Grübel, “Hard X ray holographic diffraction imaging,” Phys. Rev. Lett.100(24), 245503 (2008). [CrossRef] [PubMed]
  18. M. D. Seaberg, D. E. Adams, E. L. Townsend, D. A. Raymondson, W. F. Schlotter, Y. Liu, C. S. Menoni, L. Rong, C.-C. Chen, J. Miao, H. C. Kapteyn, and M. M. Murnane, “Ultrahigh 22 nm resolution coherent diffractive imaging using a desktop 13 nm high harmonic source,” Opt. Express19(23), 22470–22479 (2011). [CrossRef] [PubMed]
  19. Y. Kashter, O. Levi, and A. Stern, “Optical compressive change and motion detection,” Appl. Opt.51(13), 2491–2496 (2012). [CrossRef] [PubMed]
  20. M. Maletic-Savatic, R. Malinow, and K. Svoboda, “Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity,” Science283(5409), 1923–1927 (1999). [CrossRef] [PubMed]
  21. M. A. Lauterbach, C. K. Ullal, V. Westphal, and S. W. Hell, “Dynamic imaging of colloidal-crystal nanostructures at 200 frames per second,” Langmuir26(18), 14400–14404 (2010). [CrossRef] [PubMed]
  22. S. Gazit, A. Szameit, Y. C. Eldar, and M. Segev, “Super-resolution and reconstruction of sparse sub-wavelength images,” Opt. Express17(26), 23920–23946 (2009). [CrossRef] [PubMed]
  23. Y. Shechtman, S. Gazit, A. Szameit, Y. C. Eldar, and M. Segev, “Super-resolution and reconstruction of sparse images carried by incoherent light,” Opt. Lett.35(8), 1148–1150 (2010). [CrossRef] [PubMed]
  24. H. Wang, S. Han, and M. I. Kolobov, “Quantum limits of super-resolution of optical sparse objects via sparsity constraint,” Opt. Express20(21), 23235–23252 (2012). [CrossRef] [PubMed]
  25. A. Beck and Y. C. Eldar, "Sparsity constrained nonlinear optimization: Optimality conditions and algorithms," arXiv:1203.4580 (2012).
  26. Y. C. Eldar and S. Mendelson, "Phase retrieval: Stability and recovery guarantees," arXiv:1211.0872 (2012).
  27. K. Jaganathan, S. Oymak, and B. Hassibi, “Recovery of sparse 1-D signals from the magnitudes of their Fourier transform,” arXiv:1206.1405v1, (2012).
  28. H. Ohlsson, A. Y. Yang, R. Dong, and S. S. Sastry, “Compressive phase retrieval from squared output measurements via semidefinite programming,” arXiv:1111.6323v3, (2012).
  29. S. Mukherjee and C. S. Seelamantula, “An iterative algorithm for phase retrieval with sparsity constaints: Application to frequency-domain optical-coherence tomography,” ICASSP 2012.
  30. Y. Shechtman, A. Beck, and Y. C. Eldar, “GESPAR: Efficient phase retrieval of sparse signals,” arXiv:1301.1018 (2013).
  31. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, 2007).
  32. D. Le Gall, “MPEG: A video compression standard for multimedia applications,” Commun. ACM34(4), 46–58 (1991). [CrossRef]
  33. D. J. Townsend, P. K. Poon, S. Wehrwein, T. Osman, A. V. Mariano, E. M. Vera, M. D. Stenner, and M. E. Gehm, “Static compressive tracking,” Opt. Express20(19), 21160–21172 (2012). [CrossRef] [PubMed]
  34. E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory52(2), 489–509 (2006). [CrossRef]
  35. D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory52(4), 1289–1306 (2006). [CrossRef]
  36. M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing (Springer Verlag, 2010).
  37. M. F. Duarte and Y. C. Eldar, “Structured Compressed Sensing: From Theory to Applications,” IEEE Trans. Signal Process.59(9), 4053–4085 (2011). [CrossRef]
  38. Y. Shechtman, Y. C. Eldar, A. Szameit, and M. Segev, “Sparsity based sub-wavelength imaging with partially incoherent light via quadratic compressed sensing,” Opt. Express19(16), 14807–14822 (2011). [CrossRef] [PubMed]
  39. A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater.11(5), 455–459 (2012). [CrossRef] [PubMed]
  40. D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express17(15), 13040–13049 (2009). [CrossRef] [PubMed]
  41. Y. Rivenson, A. Stern, and B. Javidi, “Compressive Fresnel holography,” Journal of Display Technology6(10), 506–509 (2010). [CrossRef]
  42. L. Tian, J. Lee, S. B. Oh, and G. Barbastathis, “Experimental compressive phase space tomography,” Opt. Express20(8), 8296–8308 (2012). [CrossRef] [PubMed]
  43. D. P. Bertsekas, Nonlinear Programming (Athena Scientific, 1999.)
  44. J. R. Fienup and C. C. Wackerman, “Phase-retrieval stagnation problems and solutions,” JOSA A3(11), 1897–1907 (1986). [CrossRef]
  45. V. Elser, “Phase retrieval by iterated projections,” J. Opt. Soc. Am. A20(1), 40–55 (2003). [CrossRef] [PubMed]
  46. M. Guizar-Sicairos and J. R. Fienup. "Understanding the twin-image problem in phase retrieval," J. Opt. Soc. Am. A.29, 2367-2375 (2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (988 KB)      QuickTime
» Media 2: AVI (1047 KB)      QuickTime
» Media 3: AVI (965 KB)      QuickTime
» Media 4: AVI (1067 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited