OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 6371–6376

Optomechanical transductions in single and coupled wheel resonators

Chenguang Huang, Jiahua Fan, Ruoyu Zhang, and Lin Zhu  »View Author Affiliations

Optics Express, Vol. 21, Issue 5, pp. 6371-6376 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2442 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this report, the optomechanical transductions in both single and two side-coupled wheel resonators are investigated. In the single resonator, the optomechanical transduction sensitivity is determined by the optical and mechanical quality factors of the resonator. In the coupled resonators, the optomechanical transduction is related to the energy distribution in the two resonators, which is strongly dependent on the input detuning. Compared to a single resonator, the coupled resonators can still provide very sensitive optomechanical transduction even if the optical and mechanical quality factors of one resonator are degraded.

© 2013 OSA

OCIS Codes
(230.0230) Optical devices : Optical devices
(230.3120) Optical devices : Integrated optics devices
(230.4555) Optical devices : Coupled resonators
(230.4685) Optical devices : Optical microelectromechanical devices
(120.4880) Instrumentation, measurement, and metrology : Optomechanics

ToC Category:
Optical Devices

Original Manuscript: February 1, 2013
Revised Manuscript: February 27, 2013
Manuscript Accepted: February 28, 2013
Published: March 6, 2013

Chenguang Huang, Jiahua Fan, Ruoyu Zhang, and Lin Zhu, "Optomechanical transductions in single and coupled wheel resonators," Opt. Express 21, 6371-6376 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riviere, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys.5, 909–914 (2009). [CrossRef]
  2. A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics6, 768–772 (2012). [CrossRef]
  3. T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express15, 17172–17205 (2007). [CrossRef] [PubMed]
  4. X. Sun, K. Y. Fong, W. H. P. Pernice, and H. X. Tang, “GHz optomechanical resonators with high mechanical Q factor in air,” Opt. Express19, 22316–22321 (2011). [CrossRef] [PubMed]
  5. O. Basarir, S. Bramhavar, and K. L. Ekinci, “Monolithic integration of a nanomechanical resonator to an optical microdisk cavity,” Opt. Express20, 4272–4279 (2012). [CrossRef] [PubMed]
  6. X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett.12, 2299–2305 (2012). [CrossRef] [PubMed]
  7. O. Basarir, S. Bramhavar, and K. L. Ekinci, “Motion transduction in nanoelectromechanical systems (NEMS) arrays using near-field optomechanical coupling,” Nano Lett.12, 534–539 (2012). [CrossRef] [PubMed]
  8. K. Srinivasan, H. X. Miao, M. T. Rakher, M. Davanco, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Lett.11, 791–797 (2011). [CrossRef] [PubMed]
  9. H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Theoretical and experimental study of radiation pressure-induced mechanical oscillations(parametric instability) in optical microcavities,” IEEE J. Sel. Top. Quantum Electron.12, 96–107 (2006). [CrossRef]
  10. S. Tallur, S. Sridaran, and S. A. Bhave, “A monolithic radiation-pressure driven, low phase noise silicon nitride opto-mechanical oscillator,” Opt. Express19, 24522–24529 (2011). [CrossRef] [PubMed]
  11. W. C. Jiang, X. Lu, J. Zhang, and Q. Lin, “High-frequency silicon optomechanical oscillator with an ultralow threshold,” Opt. Express20, 15991–15996 (2012). [CrossRef] [PubMed]
  12. T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett.95, 033901 (2005). [CrossRef] [PubMed]
  13. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystal,” Nature462, 78–82 (2009). [CrossRef] [PubMed]
  14. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature462, 633–636 (2009). [CrossRef] [PubMed]
  15. Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett.103, 103601 (2009). [CrossRef] [PubMed]
  16. Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics4, 236–242 (2010). [CrossRef]
  17. M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett.109, 233906 (2012). [CrossRef]
  18. C. Huang, J. Fan, R. Zhang, and L. Zhu, “Internal frequency mixing in a single optomechanical resonator,” Appl. Phys. Lett.101, 231112 (2012). [CrossRef]
  19. X. Sun, X. Zhang, and H. X. Tang, “High-Q silicon optomechanical microdisk resonators as gigahertz frequencies,” Appl. Phys. Lett.100, 173116 (2012). [CrossRef]
  20. C. Huang, J. Fan, and L. Zhu, “Dynamic nonlinear thermal optical effects in coupled ring resonators,” AIP Advances2, 032131 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited