OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 6377–6390

Hitless wavelength-selective switch based on quantum well second-order series-coupled microring resonators

Hiroki Ikehara, Tsuyoshi Goto, Hiroshi Kamiya, Taro Arakawa, and Yasuo Kokubun  »View Author Affiliations

Optics Express, Vol. 21, Issue 5, pp. 6377-6390 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3478 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A hitless wavelength-selective switch (WSS) based on InGaAs/InAlAs multiple quantum well (MQW) second-order series-coupled microring resonators is proposed and fabricated. In the core layer, a five-layer asymmetric coupled quantum well (FACQW) structure is employed. The WSS is driven by the electrorefractive index change in the FACQW core layer caused by the quantum-confined Stark effect (QCSE). The wafer for the WSS is grown by molecular beam epitaxy and waveguide structures are formed by dry etching. Boxlike spectrum responses and hitless switching characteristics of the WSS are successfully demonstrated for the first time. The change in coupling efficiency at a coupler between a ring and a busline and between rings and its effect on the switching characteristics are also discussed.

© 2013 OSA

OCIS Codes
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(230.4555) Optical devices : Coupled resonators
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Optical Devices

Original Manuscript: January 4, 2013
Revised Manuscript: February 23, 2013
Manuscript Accepted: February 25, 2013
Published: March 6, 2013

Hiroki Ikehara, Tsuyoshi Goto, Hiroshi Kamiya, Taro Arakawa, and Yasuo Kokubun, "Hitless wavelength-selective switch based on quantum well second-order series-coupled microring resonators," Opt. Express 21, 6377-6390 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1× N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett.16(6), 1480–1482 (2004). [CrossRef]
  2. S. J. Emelett and R. Soref, “Design and simulation of silicon microring optical routing switches,” J. Lightwave Technol.23(4), 1800–1807 (2005). [CrossRef]
  3. Y. Goebuchi, T. Ka, and Y. Kokubun, “Fast and stable wavelength-selective switch using double-series coupled dielectric microring resonator,” IEEE Photon. Technol. Lett.18(3), 538–540 (2006). [CrossRef]
  4. T. Kato and Y. Kokubun, “Optimum coupling coefficients in second-order series-coupled ring resonator for nonblocking wavelength channel switch,” J. Lightwave Technol.24(2), 991–999 (2006). [CrossRef]
  5. S. Suzuki, Y. Kokubun, and S. T. Chu; “Box-like filter response and expansion of FSR by a vertically triple coupled microring resonator filter,” J. Lightwave Technol.20(8), 1525–1529 (2002). [CrossRef]
  6. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion,” Opt. Express15(22), 14765–14771 (2007). [CrossRef] [PubMed]
  7. Y. Yanagase, S. Yamagata, and Y. Kokubun, “Wavelength tunable polymer microring resonator filter with 9.4 nm tuning range,” Electron. Lett.39(12), 922–924 (2003). [CrossRef]
  8. B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett.16(10), 2263–2265 (2004). [CrossRef]
  9. T. Kato, Y. Goebuchi, and Y. Kokubun, “Improvement of switching characteristics of hitless wavelength-selective switch with double-series-coupled microring resonators,” Jpn. J. Appl. Phys.46(6A), 3428–3432 (2007). [CrossRef]
  10. O. Tsilipakos, T. V. Yioultsis, and E. E. Kriezis, “Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides,” J. Appl. Phys.106(9), 093109 (2009). [CrossRef]
  11. S.-J. Chang, C.-Y. Ni, Z. Wang, and Y.-J. Chen, “A compact and low power consumption optical switch based on microrings,” IEEE Photon. Technol. Lett.20(12), 1021–1023 (2008). [CrossRef]
  12. T.-J. Wang and C.-H. Chu, “Wavelength-tunable microring resonator on lithium niobate,” IEEE Photon. Technol. Lett.19(23), 1904–1906 (2007). [CrossRef]
  13. J.-H. Song, D.-H. Kim, and S.-S. Lee, “Polymeric microring resonator enabling variable extinction ratio,” Jpn. J. Appl. Phys.46(7), L145–L147 (2007). [CrossRef]
  14. D. Geuzebroek, E. Klein, H. Kelderman, N. Baker, and A. Driessen, “Compact wavelength-selective switch for gigabit filtering in access networks,” IEEE Photon. Technol. Lett.17(2), 336–338 (2005). [CrossRef]
  15. M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett.89(7), 071110 (2006). [CrossRef]
  16. C. Li, L. Zhou, and A. W. Poon, “Silicon microring carrier-injection-based modulators/switches with tunable extinction ratios and OR-logic switching by using waveguide cross-coupling,” Opt. Express15(8), 5069–5076 (2007). [CrossRef] [PubMed]
  17. R. Amatya, C. W. Holzwarth, H. I. Smith, and R. J. Ram, “Precision tunable silicon compatible microring filters,” IEEE Photon. Technol. Lett.20(20), 1739–1741 (2008). [CrossRef]
  18. T. Hu, W. Wang, C. Qiu, P. Yu, H. Qiu, Y. Zhao, X. Jiang, and J. Yang, “Thermally tunable filters based on third-order microring resonators for WDM applications,” IEEE Photon. Technol. Lett.24(6), 524–526 (2012). [CrossRef]
  19. X. Luo, J. Song, S. Feng, A. W. Poon, T.-Y. Liow, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett.24(10), 821–823 (2012). [CrossRef]
  20. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge absorption in quantum well structures: The quantum-confined Stark effect,” Phys. Rev. Lett.53(22), 2173–2176 (1984). [CrossRef]
  21. J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P.-T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photon. Technol. Lett.12(3), 320–322 (2000). [CrossRef]
  22. V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett.14(1), 74–76 (2002). [CrossRef]
  23. R. Grover, Member, IEEET. A. Ibrahim, S. Kanakaraju, L. Lucas, L. C. Calhoun, and P.-T. Ho, “A tunable GaInAsP–InP optical microring notch filter,” IEEE Photon. Technol. Lett.16(2), 467–469 (2004). [CrossRef]
  24. H. Simos, A. Bogris, N. Raptis, and D. Syvridis, “Dynamic properties of a WDM switching module based on active microring resonators,” IEEE Photon. Technol. Lett.22(4), 206–208 (2010). [CrossRef]
  25. S. Ravindran, A. Datta, K. Alameh, and Y. T. Lee, “GaAs based long-wavelength microring resonator optical switches utilising bias assisted carrier-injection induced refractive index change,” Opt. Express20(14), 15610–15627 (2012). [CrossRef] [PubMed]
  26. T. Makino, T. Gotoh, R. Hasegawa, T. Arakawa, and Y. Kokubun, “Microring resonator wavelength tunable filter using five-layer asymmetric coupled quantum well,” J. Lightwave Technol.29(16), 2387–2393 (2011). [CrossRef]
  27. H. Kaneshige, Y. Ueyama, H. Yamada, H. Yajima, T. Arakawa, and Y. Kokubun, “InGaAs/InAlAs multiple quantum well Mach-Zehnder modulator with single microring resonator,” Jpn. J. Appl. Phys.51(2), 02BG01 (2012). [CrossRef]
  28. H. Ikehara, T. Goto, H. Kamiya, T. Arakawa, and Y. Kokubun, “Hitless wavelength-selective switch using multiple quantum well second-order series coupled microring resonators,” Photonics in Switching (PS) 2012, Th-S24–O07 (2012).
  29. H. Feng, J. P. Pang, M. Sugiyama, K. Tada, and Y. Nakano, “Field-induced optical effect in a five-step asymmetric coupled quantum well with modified potential,” IEEE J. Quantum Electron.34(7), 1197–1208 (1998). [CrossRef]
  30. T. Arakawa, T. Toya, M. Ushigome, K. Yamaguchi, T. Ide, and K. Tada, “InGaAs/InAlAs five-layer asymmetric coupled quantum well exhibiting giant electrorefractive index change,” Jpn. J. Appl. Phys.50, 032204 (2011). [CrossRef]
  31. G. Barbarossa, A. M. Matteo, and M. N. Armenise, “Theoretical analysis of triple-coupler ring-based optitacl guided-wave resonator,” J. Lightwave Technol.13(2), 148–157 (1995). [CrossRef]
  32. R. Orta, P. Savi, R. Rascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photon. Technol. Lett.7(12), 1447–1449 (1995). [CrossRef]
  33. C. K. Madsen and J. H. Zhao, “A general planar waveguide autoregressive optical filter,” J. Lightwave Technol.14(3), 437–447 (1996). [CrossRef]
  34. T. Kato, Y. Goebuchi, and Y. Kokubun, “Experimental study of optimum coupling efficiency of double series coupled microring resonator,” Jpn. J. Appl. Phys.45(10A), 7741–7745 (2006). [CrossRef]
  35. M. Born and E. Wolf, Principles of Optics, 7th Ed. (Cambridge University Press, 1999), p.838.
  36. S. L. Chuang, “Efficient band-structure calculations of strained quantum wells,” Phys. Rev. B Condens. Matter43(12), 9649–9661 (1991). [CrossRef] [PubMed]
  37. T. Arakawa, T. Hariki, Y. Amma, M. Fukuoka, M. Ushigome, and K. Tada, “Low-voltage Mach-Zehnder modulator with InGaAs/InAlAs five-layer asymmetric coupled quantum well,” Jpn. J. Appl. Phys.51, 042203 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited