OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 6422–6441

The Fiber Fuse - from a curious effect to a critical issue: A 25th year retrospective

Raman Kashyap  »View Author Affiliations

Optics Express, Vol. 21, Issue 5, pp. 6422-6441 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3417 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A process leading to a stunningly beautiful and distinctive propagating plasma emission in optical fibers was discovered by the author 25 years ago. The genie that escaped its glass bottle leaves a trail of destruction. This paper traces the history and impact of the effect, which can threaten the security of all modern communication systems.

© 2013 OSA

OCIS Codes
(060.2400) Fiber optics and optical communications : Fiber properties
(190.3100) Nonlinear optics : Instabilities and chaos
(190.5940) Nonlinear optics : Self-action effects
(230.7370) Optical devices : Waveguides
(260.3230) Physical optics : Ionization
(260.5210) Physical optics : Photoionization
(350.1820) Other areas of optics : Damage
(350.5340) Other areas of optics : Photothermal effects
(350.5400) Other areas of optics : Plasmas
(230.2285) Optical devices : Fiber devices and optical amplifiers
(230.5298) Optical devices : Photonic crystals
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown
(250.4390) Optoelectronics : Nonlinear optics, integrated optics

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: December 28, 2012
Revised Manuscript: February 21, 2013
Manuscript Accepted: February 23, 2013
Published: March 7, 2013

Raman Kashyap, "The Fiber Fuse - from a curious effect to a critical issue: A 25th year retrospective," Opt. Express 21, 6422-6441 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. S. Bergano, “Undersea cables make the web world wide,” Plenary, OECC2012, Busan, Korea (2–6 July, 2012).
  2. R. Kashyap and K. J. Blow, “Spectacular demonstration of catastrophic failure in long lengths of optical fiber via self-propelled self-focusing,” Post deadline paper PD7, 8th National Quantum Electronics Conf., QE8, St. Andrews, Scotland, UK, (21–25 September 1987).
  3. J. W. Goethe, Faust: Texte und Kommentare: 2 Bände, with commentary by Albrecht Schöne (Insel Verlag, 2003).
  4. R. Kashyap, “Phase-matched periodic-electric-field-induced second-harmonic generation in optical fibers,” J. Opt. Soc. Am. B6(3), 313–328 (1989). [CrossRef]
  5. P. D. Maker, R. W. Terhune, and C. M. Savage, Quantum Electronics, v.III., P. Grivet and N. Blombergen (Eds.)., (Columbia Univ. Press, 1964).
  6. R. R. Alfano and S. L. Shapiro, “Observation of Self-Phase Modulation and Small-Scale Filaments in Crystals and Glasses,” Phys. Rev. Lett.24(11), 592–594 (1970). [CrossRef]
  7. I. A. Bufetov, POWAG '2002, Lecture 16, St. Petersburg, Russia, (June 21–24, 2002).
  8. R. Kashyap and K. J. Blow, “Observation of catastrophic self-propelled self-focusing in optical fibers,” Electron. Lett.24(1), 47–49 (1988). [CrossRef]
  9. R. Kashyap, “Self-propelled self-focusing damage in optical fibers,” in Proceedings of The Xth International Conference on Lasers, 859–866, Stateline, Lake Tahoe, Nevada, USA, Ed. F. J. Duarte, (STS Press, 1987)
  10. E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. M. Mashinsky, V. G. Plotnichenko, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of fluoride and chalcogenide optical fibers,” Electron. Lett.38(15), 783–784 (2009).
  11. E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. G. Plotnichenko, V. M. Mashinsky, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of optical fibers of various composition under the laser radiation,” Quantum Electron.32(6), 476–478 (2002).
  12. S. Todoroki, “Origin of periodic void formation during fiber fuse,” Opt. Express13(17), 6381–6389 (2005). [CrossRef] [PubMed]
  13. R. Kashyap, “High average power effects in optical fibers and devices,” SPIE 4940, Reliability of Optical Fiber Components, Devices, Systems, and Networks, ed. H. G. Limberger, M. J. Matthewson, (SPIE, Bellingham, WA, 2003), 108–117 (2003).
  14. D. P. Hand and P. St. J. Russell, “Solitary thermal shock waves and optical damage in optical fibers: the fiber fuse,” Opt. Lett.13(9), 767–769 (1988). [CrossRef] [PubMed]
  15. E. M. Dianov, V. M. Mashinskii, V. A. Myzina, Y. S. Sidorin, A. M. Streltsov, and A. V. Chickolini, “Change of refractive index profile in the process of laser-induced fiber damage,” Sov. Lightwave Commun.2, 293–299 (1992).
  16. I. A. Bufetov, A. A. Frolov, A. V. Shubin, M. E. Likhachev, S. V. Lavrishchev, and E. M. Dianov, “Propagation of an optical discharge through optical fibers upon interference of modes,” Quantum Electron.38(5), 441–444 (2008). [CrossRef]
  17. R. M. Atkins, P. G. Simpkins, and A. D. Yablon, “Track of a fiber fuse: a Rayleigh instability in optical waveguides,” Opt. Lett.28(12), 974–976 (2003). [CrossRef] [PubMed]
  18. T. J. Driscoll, J. M. Calo, and N. M. Lawandy, “Explaining the optical fuse,” Opt. Lett.16(13), 1046–1048 (1991). [CrossRef] [PubMed]
  19. R. Kashyap, A. Sayles, and G. F. Cornwell, “Heatflow modeling and visualisation of catastrophic self-propelled damage in single mode optical fibers,” Optical Fibers Measurement Symposium, Boulder, SPIE 2966, 586–591 (1996).
  20. R. Kashyap, US patent Number: 5,022,734 “Method of modifying an optical waveguide and waveguide so modified,” (filed 21 September 1988.)
  21. M. Facão, A. M. Rocha, and P. S. Andre, “Traveling solutions of the fuse effect in optical fibers,” J. Lightwave Technol.29(1), 109–114 (2011). [CrossRef]
  22. A. M. Rocha, M. Facão, A. Martins, and P. S. André, “Simulation of fiber fuse effect propagation,” International Conf. on Transparent Networks – Mediterranean Winter, Angers, France, paper FrP.12 (2009). [CrossRef]
  23. D. D. Davis, S. C. Mettler, and D. J. DiGiovanni, “A comparative evaluation of fiber fuse models,” Proc. SPIE2966, 592–606 (1997). [CrossRef]
  24. E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. E. Rakitin, M. A. Melkumov, M. I. Kulish, and A. A. Frolov, “Temperature of optical discharge under action of laser radiation in silica-based fibers,” Paper We3.4.4, Proceedings of ECOC 2005, 3, 469–470, Glasgow, U.K., (Sep. 25–29, 2005). [CrossRef]
  25. E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. E. Rakitin, M. A. Melkumov, M. I. Kulish, and A. A. Frolov, “High-speed photography, spectra, and temperature of optical discharge in silica-based fibers,” IEEE Photon. Technol. Lett.18(6), 752–754 (2006). [CrossRef]
  26. R. Kashyap, Fiber Bragg Gratings, Second Edition (Optics and Photonics Series), (Academic Press, 2009).
  27. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am.55(10), 1205 (1965). [CrossRef]
  28. E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. A. Frolov, M. Ya. Schelev, and V. I. Lozovoĭ, “Detonation-like mode of the destruction of optical fibers under intense laser radiation,” JETP Lett.83(2), 75–78 (2006). [CrossRef]
  29. E. L. Ruden and G. F. Kiuttu, “Adiabatic, shock, and plastic work heating of solids and exploding metal cylinders,” IEEE Trans. Plasma Sci.30(5), 1692–1699 (2002). [CrossRef]
  30. K. S. Abedin, M. Nakazawa, and T. Miyazaki, “Backreflected radiation due to a propagating fiber fuse,” Opt. Express17(8), 6525–6531 (2009). [CrossRef] [PubMed]
  31. K. S. Abedin, T. Miyazaki, and M. Nakazawa, “Measurements of spectral broadening and Doppler shift of backreflections from a fiber fuse using heterodyne detection,” Opt. Lett.34(20), 3157–3159 (2009). [CrossRef] [PubMed]
  32. Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, and R. Nagase, “Evaluation of High-Temperature Absorption Coefficients of Optical Fibers,” IEEE Photon. Technol. Lett.16(4), 1008–1010 (2004). [CrossRef]
  33. R. Wyatt, R. M. Percival, and R. Kashyap, “Optical communication system and method of protecting an optical route,” US Patent 7,162,161 B2 (2007).
  34. R. I. Golyatina, A. N. Tkachev, and S. I. Yakovlenko, “Calculation of velocity and threshold for a thermal wave of laser radiation absorption in a fiber optic waveguide based on the two-dimensional nonstationary heat conduction equation,” Laser Phys.14(11), 1429–1433 (2004).
  35. N. Akhmediev, P. St. J. Russell, M. Taki, and J. M. Soto-Crespo, “Heat dissipative solitons in optical fibers,” Phys. Lett. A372(9), 1531–1534 (2008). [CrossRef]
  36. E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. M. Mashinsky, V. G. Plotnichenko, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of fluoride and chalcogenide optical fibers,” Electron. Lett.38(15), 783–784 (2002). [CrossRef]
  37. E. M. Dianov, I. A. Bufetov, A. A. Frolov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorobjev, “Fiber fuse effect in microstructured fibers,” IEEE Photon. Technol. Lett.16(1), 180–181 (2004). [CrossRef]
  38. N. Hanzawa, K. Kurokawa, K. Tsujikawa, K. Takenaga, S. Tanigawa, S. Matsuo, and S. Tomita, “Observation of a propagation mode of a fiber fuse with a long-period damage track in hole-assisted fiber,” Opt. Lett.35(12), 2004–2006 (2010). [CrossRef] [PubMed]
  39. W. Ha, Y. Jeong, and K. Oh, “Fiber fuse effect in hollow optical fibers,” Opt. Lett.36(9), 1536–1538 (2011). [CrossRef] [PubMed]
  40. R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett.24(11), 592–594 (1970). [CrossRef]
  41. S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nano void structures via femtosecond laser irradiation,” Nano Lett.5(8), 1591–1595 (2005). [CrossRef] [PubMed]
  42. J.-L. Archambault, L. Reekie, and P. St. J. Russell, “100% reflectivity Bragg reflectors produced in optical fibers by a single excimer laser pulse,” Electron. Lett.29(5), 453–455 (1993). [CrossRef]
  43. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Ultimate power limits of optical fibers,” Paper OMO6, NFOEC/OFC (2010).
  44. K. Seo, N. Nishimura, M. Shiino, R. Yuguchi, and H. Sasaki, “Evaluation of high-power endurance in optical fiber links,” Furukawa Review 24 (2003).
  45. S. Todoroki and S. Inoue, “Optical fuse made of silica glass optical fibers spliced through low-melting glass with carbon-coating,” Proceedings of XX Int. Cong. on Glass, paper O-14–010, Kyoto, Japan (2004).
  46. A. M. Rocha, P. F. Da Costa Antunes, M. D. F. F. Domingues, M. Facão, and P. S. De Brito André, “Detection of fiber fuse effect using FBG sensors,” IEEE Sens. J.B11(6), 1390–1394 (2011), doi:. [CrossRef]
  47. K. S. Abedin and M. Nakazawa, “Real time monitoring of a fiber fuse using an optical time-domain reflectometer,” Opt. Express18(20), 21315–21321 (2010). [CrossRef] [PubMed]
  48. E. M. Dianov, I. A. Bufetov, and A. A. Frolov, “Destruction of silica fiber cladding by the fuse effect,” Opt. Lett.29(16), 1852–1854 (2004). [CrossRef] [PubMed]
  49. F. V. Bunkin, V. I. Konov, A. M. Prohorov, and V. B. Fedorov, “Laser spark in the regime of slow burning,” JETF Letts.9, 609–612 (1969).
  50. Y. P. Raizer, Laser-Induced Discharge Phenomena (Plenum Publishing, 1977).
  51. W. Beust and W. L. Ford, “Arcing in CW transmitters,” Microwave J., MTT. 10, 91 (1961).
  52. R. Kashyap, B. J. Ainslie, and G. D. Maxwell, “Second-harmonic generation in a GeO2 ridge waveguide,” Electron. Lett.25(3), 206–208 (1989). [CrossRef]
  53. M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics2(12), 737–740 (2008). [CrossRef]
  54. http://www.finisar.com/technical-information , “Operational issues in the deployment of Raman amplifiers (Updated November 2012),” Technical Papers: Optical Amplifiers.
  55. http://www.redcinc.com/?CategoryID=267&ArticleID=301
  56. C. H. Henry, P. M. Petroff, R. A. Logan, and F. R. Merritt, “Catastrophic damage of AlxGa1-xAs double-heterostructure laser material,” J. Appl. Phys.50(5), 3721–3732 (1979). [CrossRef]
  57. P. St. J. Russell, Private Communication (2012).
  58. V. P. Gapontsev, “Advances in power scaling of fiber lasers,” Paper 8601–13, Photonics West (2013).
  59. R.-J. Essiambre and R. W. Tkach, “Capacity trends and limits of optical communication networks,” P.I.E.E.E100(5), 1035–1055 (2012).
  60. S. Todoroki, “Fiber fuse propagation behavior,” Optical Fibers/Book 4, ed. Y. Moh, (InTech, 2011) [Online] http://www.intechweb.org/books/ ).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (2620 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited