OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 6442–6447

Gold nanoparticle surface deposition induced quantum efficiency enhancement for Si-multi-pixel photon counters

Xiaomeng Wang, Min Song, Yan Liang, Zhiyuan Wang, Weibin Kong, Jianhua Huang, E Wu, Baotao Wu, Guang Wu, and Heping Zeng  »View Author Affiliations


Optics Express, Vol. 21, Issue 5, pp. 6442-6447 (2013)
http://dx.doi.org/10.1364/OE.21.006442


View Full Text Article

Enhanced HTML    Acrobat PDF (1542 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

With recent development of nanotechnology, novel devices with nanostructures arise to improve the performance of photodetectors. Here, we demonstrated that by surface decoration with gold nanoparticles on the active area, the quantum detection efficiency of a multi-pixel photon counter was increased due to surface plasmon resonance enhancement. The deposited gold nano-particles actually brought about almost the same enhancement factor for any photon-number fields. As a result, the photon-number-resolving capability of the multi-pixel photon counter was well reserved with the gold nano-particle deposition induced efficiency augment. This result provides guidance to the development of the high-efficiency photon-number-resolving detectors.

© 2013 OSA

OCIS Codes
(030.5260) Coherence and statistical optics : Photon counting
(040.5160) Detectors : Photodetectors
(040.1345) Detectors : Avalanche photodiodes (APDs)

ToC Category:
Detectors

History
Original Manuscript: January 2, 2013
Revised Manuscript: February 15, 2013
Manuscript Accepted: February 26, 2013
Published: March 7, 2013

Citation
Xiaomeng Wang, Min Song, Yan Liang, Zhiyuan Wang, Weibin Kong, Jianhua Huang, E Wu, Baotao Wu, Guang Wu, and Heping Zeng, "Gold nanoparticle surface deposition induced quantum efficiency enhancement for Si-multi-pixel photon counters," Opt. Express 21, 6442-6447 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-5-6442


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett.6(4), 683–688 (2006). [CrossRef] [PubMed]
  2. N. Large, J. Aizpurua, V. K. Lin, S. L. Teo, R. Marty, S. Tripathy, and A. Mlayah, “Plasmonic properties of gold ring-disk nano-resonators: fine shape details matter,” Opt. Express19(6), 5587–5595 (2011). [CrossRef] [PubMed]
  3. K. Kelly, E. Coronado, L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003). [CrossRef]
  4. E. Wu, Y. Chi, B. Wu, K. Xia, Y. Yokota, K. Ueno, H. Misawa, and H. Zeng, “Spatial polarization sensitivity of single Au bowtie nanostructures,” J. Lumin.131(9), 1971–1974 (2011). [CrossRef]
  5. Y. Chi, G. Chen, F. Jelezko, E. Wu, and H. Zeng, “Enhanced photoluminescence of single-photon emitters in nanodiamonds on a gold film,” IEEE Photon. Technol. Lett.23(6), 374–376 (2011). [CrossRef]
  6. H. Stuart and D. Hall, “Island size effect in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett.73(26), 3815–3817 (1998). [CrossRef]
  7. G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol.5(6), 391–400 (2010). [CrossRef] [PubMed]
  8. H. Tan, R. Santbergen, A. H. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett.12(8), 4070–4076 (2012). [CrossRef] [PubMed]
  9. P. Matheu, S. Lim, D. Derkacs, C. McPheeters, and E. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett.93(11), 113108 (2008). [CrossRef]
  10. S. Lim, W. Mar, P. Matheu, D. Derkacs, and E. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101(10), 104309 (2007). [CrossRef]
  11. O. Guilatt, B. Apter, and U. Efron, “Light absorption enhancement in thin silicon film by embedded metallic nanoshells,” Opt. Lett.35(8), 1139–1141 (2010). [CrossRef] [PubMed]
  12. C. Ho, D. Yeh, V. Su, C. Yang, P. Yang, M. Pu, C. Kuan, I. Cheng, and S. Lee, “Plasmonic multilayer nanoparticles enhanced photocurrent in thin film hydrogenated amorphous silicon solar cells,” J. Appl. Phys.112(2), 023113 (2012). [CrossRef]
  13. S. Kim, C. Cho, B. Kim, Y. Choi, S. Park, K. Lee, and S. Im, “The effect of localized surface plasmon on the photocurrent of silicon nanocrystal photodetectors,” Appl. Phys. Lett.94(18), 183108 (2009). [CrossRef]
  14. R. W. Heeres, S. N. Dorenbos, B. Koene, G. S. Solomon, L. P. Kouwenhoven, and V. Zwiller, “On-chip single plasmon detection,” Nano Lett.10(2), 661–664 (2010). [CrossRef] [PubMed]
  15. A. Otte, B. Dolgoshein, J. Hose, S. Klemin, E. Lorenz, G. Lutz, R. Mirzoyan, E. Popova, R. Richter, L. Strüder, and M. Teshima, “Prospects of using silicon photomultipliers for the astroparticle physics experiments Euso and Magic,” IEEE Trans. Nucl. Sci.53(2), 636–640 (2006). [CrossRef]
  16. D. A. Kalashnikov, S. H. Tan, M. V. Chekhova, and L. A. Krivitsky, “Accessing photon bunching with a photon number resolving multi-pixel detector,” Opt. Express19(10), 9352–9363 (2011). [CrossRef] [PubMed]
  17. S. Berciaud, L. Cognet, P. Tamarat, and B. Lounis, “Observation of intrinsic size effects in the optical response of individual gold nanoparticles,” Nano Lett.5(3), 515–518 (2005). [CrossRef] [PubMed]
  18. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express16(26), 21793–21800 (2008). [CrossRef] [PubMed]
  19. S. P. Sundararajan, N. K. Grady, N. Mirin, and N. J. Halas, “Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode,” Nano Lett.8(2), 624–630 (2008). [CrossRef] [PubMed]
  20. T. Atay, J. Song, and A. Nurmikko, “Stronglyinteracting plasmon nanoparticle pairs: from dipole−dipole interaction to conductively coupled regime,” Nano Lett.4(9), 1627–1631 (2004). [CrossRef]
  21. K. Su, Q. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003). [CrossRef]
  22. J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett.8(4), 1212–1218 (2008). [CrossRef] [PubMed]
  23. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García De Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express14(21), 9988–9999 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited