OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 6480–6487

Goos-Hänchen shifts of reflected terahertz wave on a COC-air interface

Qingmei Li, Bo Zhang, and Jingling Shen  »View Author Affiliations


Optics Express, Vol. 21, Issue 5, pp. 6480-6487 (2013)
http://dx.doi.org/10.1364/OE.21.006480


View Full Text Article

Enhanced HTML    Acrobat PDF (1518 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Goos-Hänchen (GH) shifts of terahertz wave reflected on the Cyclo-Olefin Copolymer (COC)-air interface was investigated in simulation and experiment. The relationship between the GH shifts with the incident angle and the frequency of incident wave were calculated to get a reference for the simulation and experiment. The reflected GH shift was measured on the COC-air interface when a terahertz wave with the frequency of 0.206THz was incident to a COC double-prism. By changing the thickness of the air layer we find experimentally and simulatively that the GH shift and the energy of the reflected wave increases with the increase of the air layer thickness. The study of GH shift can provide useful information for applications of THz waves in sensor and power delivery systems.

© 2013 OSA

OCIS Codes
(120.5700) Instrumentation, measurement, and metrology : Reflection
(160.5470) Materials : Polymers
(240.7040) Optics at surfaces : Tunneling
(260.3090) Physical optics : Infrared, far

ToC Category:
Physical Optics

History
Original Manuscript: January 9, 2013
Revised Manuscript: February 14, 2013
Manuscript Accepted: February 14, 2013
Published: March 7, 2013

Citation
Qingmei Li, Bo Zhang, and Jingling Shen, "Goos-Hänchen shifts of reflected terahertz wave on a COC-air interface," Opt. Express 21, 6480-6487 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-5-6480


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. H. Renard, “Total reflection: A new evaluation of the Goos-Hänchen shift,” J. Opt. Soc. Am.54(10), 1190–1196 (1964). [CrossRef]
  2. K. Artmann, “Berechnung der Seitenversetzung des totalreflektierten strahles,” Ann. Phys.437(1–2), 87–102 (1948). [CrossRef]
  3. F. Pillon, H. Gilles, S. Girard, M. Laroche, R. Kaiser, and A. Gazibegovic, “Goos–Hänchen and Imbert–Fedorov shifts for leaky guided modes,” J. Opt. Soc. Am. B22(6), 1290–1299 (2005). [CrossRef]
  4. R. P. Riesz and R. Simon, “Reflection of a Gaussian beam from a dielectric slab,” J. Opt. Soc. Am. A2(11), 1809–1817 (1985). [CrossRef]
  5. D. Müller, D. Tharanga, A. A. Stahlhofen, and G. Nimtz, “Nonspecular shifts of microwaves in partial reflection,” Europhys. Lett.73(4), 526–532 (2006). [CrossRef]
  6. L. M. Zhou, C. L. Zou, Z. F. Han, G. C. Guo, and F. W. Sun, “Negative Goos-Hänchen shift on a concave dielectric interface,” Opt. Lett.36(5), 624–626 (2011). [CrossRef] [PubMed]
  7. J. Broe and O. Keller, “Quantum-well enhancement of the Goos-Hänchen shift for p-polarized beams in a two-prism configuration,” J. Opt. Soc. Am. A19(6), 1212–1222 (2002). [CrossRef] [PubMed]
  8. X. Chen, C. F. Li, R. R. Wei, and Y. Zhang, “Goos–Hänchen shifts in frustrated total internal reflection studied with wave-packet propagation,” Phys. Rev. A80(1), 015803 (2009). [CrossRef]
  9. X. Liu, Q. Yang, P. Zhu, Z. Qiao, and T. Li, “The influence of Goos–H¨anchen shift on total reflection of ultrashort light pulses,” J. Opt.12(3), 035214 (2010). [CrossRef]
  10. X. M. Liu and Q. F. Yang, “Total internal reflection of a pulsed light beam with consideration of Goos–Hänchen effect,” J. Opt. Soc. Am. B27(11), 2190–2194 (2010). [CrossRef]
  11. C. F. Li, “Negative lateral shift of a light beam transmitted through a dielectric slab and interaction of boundary effects,” Phys. Rev. Lett.91(13), 133903 (2003). [CrossRef] [PubMed]
  12. M. Qu and Z. Huang, “Frustrated Total Internal Reflection: Resonant and Negative Goos-Hänchen Shifts in Microwave Regime,” Opt. Commun.284(10-11), 2604–2607 (2011). [CrossRef]
  13. M. Qu, Z. Huang, and G. Lu, “Investigation on Goos-Hänchen and Imbert-Fedorov shifts of the bounded microwave beam in a double-prism symmetry structure,” J. CUC17(4), 5–10 (2010) (Science and Technology).
  14. H. Schomerus and M. Hentschel, “Correcting ray optics at curved dielectric microresonator interfaces: Phase-space unification of Fresnel filtering and the Goos-Hänchen shift,” Phys. Rev. Lett.96(24), 243903 (2006). [CrossRef] [PubMed]
  15. H. G. L. Schwefel, W. Köhler, Z. H. Lu, J. Fan, and L. J. Wang, “Direct experimental observation of the single reflection optical Goos-Hänchen shift,” Opt. Lett.33(8), 794–796 (2008). [CrossRef] [PubMed]
  16. G. Y. Oh, D. G. Kim, and Y. W. Choi, “The characterization of GH shifts of surface plasmon resonance in a waveguide using the FDTD method,” Opt. Express17(23), 20714–20720 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-23-20714 . [CrossRef] [PubMed]
  17. C. W. Chen, Y. W. Gu, H. P. Chiang, E. J. Sanchez, and P. T. Leung, “Goos–Hänchen shift at an interface of a composite material: effects of particulate clustering,” Appl. Phys. B104(3), 647–652 (2011). [CrossRef]
  18. J. Unterhinninghofen, U. Kuhl, J. Wiersig, H. J. Stöckmann, and M. Hentschel, “Measurement of the Goos–Hänchen shift in a microwave cavity,” New J. Phys.13(2), 023013 (2011). [CrossRef]
  19. M. T. Reiten, K. McClatchey, D. Grischkowsky, and R. A. Cheville, “Incidence-angle selection and spatial reshaping of terahertz pulses in optical tunneling,” Opt. Lett.26(23), 1900–1902 (2001). [CrossRef] [PubMed]
  20. M. T. Reiten, D. Grischkowsky, and R. A. Cheville, “Optical tunneling of single-cycle terahertz bandwidth pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.64(3 Pt 2), 036604 (2001). [CrossRef] [PubMed]
  21. M. T. Reiten, “Spatially resolved terahertz propagation,” Oklahoma State University, Dissertation (2006).
  22. J. J. Carey, J. Zawadzka, D. A. Jaroszynski, and K. Wynne, “Noncausal time response in frustrated total internal reflection?” Phys. Rev. Lett.84(7), 1431–1434 (2000). [CrossRef] [PubMed]
  23. A. Sengupta, A. Bandyopadhyay, B. F. Bowden, J. A. Harrington, and J. F. Federici, “Characterization of olefin copolymers using terahertz spectroscopy,” Electron. Lett.42(25), 1477–1479 (2006). [CrossRef]
  24. M. Zhang, R. Pan, W. Xiong, T. He, and J. L. Shen, “A compressed terahertz imaging method,” Chin. Phys. Lett.29(10), 104208 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited