OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 6497–6502

Characterized Brillouin scattering in silica optical fiber tapers based on Brillouin optical correlation domain analysis

Weiwen Zou, Wenning Jiang, and Jianping Chen  »View Author Affiliations


Optics Express, Vol. 21, Issue 5, pp. 6497-6502 (2013)
http://dx.doi.org/10.1364/OE.21.006497


View Full Text Article

Enhanced HTML    Acrobat PDF (1740 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper demonstrates stimulated Brillouin scattering (SBS) characterization in silica optical fiber tapers drawn from commercial single mode optical fibers by hydrogen flame. They have different waist diameters downscaled from 5 μm to 42 μm. The fully-distributed SBS measurement along the fiber tapers is implemented by Brillouin optical correlation domain analysis technique with millimeter spatial resolution. It is found that the Brillouin frequency shift (BFS) in the waist of all fiber tapers is approximately the same (i.e., ~11.17 GHz at 1550 nm). However, the BFS is gradually reduced and the Brillouin gain decreases from the waist to the untapered zone in each fiber taper.

© 2013 OSA

OCIS Codes
(060.2400) Fiber optics and optical communications : Fiber properties
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(290.5900) Scattering : Scattering, stimulated Brillouin

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: January 14, 2013
Revised Manuscript: February 8, 2013
Manuscript Accepted: February 28, 2013
Published: March 7, 2013

Citation
Weiwen Zou, Wenning Jiang, and Jianping Chen, "Characterized Brillouin scattering in silica optical fiber tapers based on Brillouin optical correlation domain analysis," Opt. Express 21, 6497-6502 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-5-6497


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003). [CrossRef] [PubMed]
  2. W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Man, and P. S. J. Russell, “Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,” J. Opt. Soc. Am. B19(9), 2148–2155 (2002). [CrossRef]
  3. G. Humbert, W. Wadsworth, S. Leon-Saval, J. C. Knight, T. A. Birks, P. St J Russell, M. Lederer, D. Kopf, K. Wiesauer, E. Breuer, and D. Stifter, “Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre,” Opt. Express14(4), 1596–1603 (2006). [CrossRef] [PubMed]
  4. W. Long, W. Zou, X. Li, and J. Chen, “DNA optical nanofibers: preparation and characterization,” Opt. Express20(16), 18188–18193 (2012). [CrossRef] [PubMed]
  5. Y. W. Song, K. Morimune, S. Y. Set, and S. Yamashita, “Polarization insensitive all-fiber mode-lockers functioned by carbon nanotubes deposited onto tapered fibers,” Appl. Phys. Lett.90(2), 021101 (2007). [CrossRef]
  6. J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett.91(9), 091109 (2007). [CrossRef]
  7. H. Luo, X. Li, W. Zou, X. Li, Z. Hong, and J. Chen, “Temperature-insensitive micro-displacement sensor based on locally bent microfiber taper modal interferometer,” IEEE Photon. J.4(3), 772–778 (2012). [CrossRef]
  8. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett.30(11), 1273–1275 (2005). [CrossRef] [PubMed]
  9. C. Grillet, C. L. C. Smith, D. Freeman, S. Madden, B. Luther-Davies, E. Magi, D. Moss, and B. Eggleton, “Efficient coupling to chalcogenide glass photonic crystal waveguides via silica optical fiber nanowires,” Opt. Express14(3), 1070–1078 (2006). [CrossRef] [PubMed]
  10. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).
  11. A. Kobyakov, S. Kumar, D. Q. Chowdhury, A. B. Ruffin, M. Sauer, S. R. Bickham, and R. Mishra, “Design concept for optical fibers with enhanced SBS threshold,” Opt. Express13(14), 5338–5346 (2005). [CrossRef] [PubMed]
  12. W. Zou, Z. He, and K. Hotate, “Investigation of strain- and temperature-dependences of Brillouin frequency shifts in GeO2-doped optical fibers,” J. Lightwave Technol.26(13), 1854–1861 (2008). [CrossRef]
  13. Y. Mizuno, P. Lenke, K. Krebber, and K. Nakamura, “Characterization of Brillouin gain spectra in polymer optical fibers fabricated by different manufacturers at 1.32 and 1.55 μm,” IEEE Photon. Technol. Lett.24(17), 1496–1498 (2012). [CrossRef]
  14. D. Garcus, T. Gogolla, K. Krebber, and F. Schliep, “Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements,” J. Lightwave Technol.15(4), 654–662 (1997). [CrossRef]
  15. X. Bao, A. Brown, M. Demerchant, and J. Smith, “Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (<10-ns) pulses,” Opt. Lett.24(8), 510–512 (1999). [CrossRef] [PubMed]
  16. K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique - proposal, experiment and simulation,” IEICE Trans. Electron.E83-C, 405–412 (2000).
  17. W. Zou, Z. He, and K. Hotate, “Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber,” Opt. Express17(3), 1248–1255 (2009). [CrossRef] [PubMed]
  18. W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber,” IEEE Photon. Technol. Lett.22(8), 526–528 (2010). [CrossRef]
  19. Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express16(16), 12148–12153 (2008). [CrossRef] [PubMed]
  20. W. Zou, C. Jin, and J. Chen, “Distributed strain sensing based on combination of Brillouin gain and loss effects in Brillouin optical correlation domain analysis,” Appl. Phys. Express5(8), 082503 (2012). [CrossRef]
  21. J. Chen, X. Shen, Z. Hong, and X. Li, “Nanostructure optic-fiber-based devices for optical signal processing,” in OptoeElectronics and Communications Conference (OECC2010), pp. 550–551, invited paper 8E2–1.
  22. W. Zou, Z. He, and K. Hotate, “Two-dimensional finite element modal analysis of Brillouin gain spectra in optical fibers,” IEEE Photon. Technol. Lett.18(23), 2487–2489 (2006). [CrossRef]
  23. T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol.10(4), 432–438 (1992). [CrossRef]
  24. J. E. McElhenny, R. K. Pattnaik, J. Toulouse, K. Saitoh, and M. Koshiba, “Unique characteristic features of stimulated Brillouin scattering in small-core photonic crystal fibers,” J. Opt. Soc. Am. B25(4), 582–593 (2008). [CrossRef]
  25. T. Erdogan, “Cladding-mode resonances in short- and long-period fiber grating filters,” J. Opt. Soc. Am. A14(8), 1760–1773 (1997). [CrossRef]
  26. http://www.mathworks.com/matlabcentral/fileexchange/27819-optical-fibre-toolbox
  27. K. Y. Song, Z. Y. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett.31(17), 2526–2528 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited