OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 6503–6508

Channel waveguide lasers in Nd:LGS crystals

Yingying Ren, Javier R. Vázquez de Aldana, Feng Chen, and Huaijin Zhang  »View Author Affiliations


Optics Express, Vol. 21, Issue 5, pp. 6503-6508 (2013)
http://dx.doi.org/10.1364/OE.21.006503


View Full Text Article

Enhanced HTML    Acrobat PDF (2627 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical channel waveguides have been produced in Nd:LGS laser crystals by using ultrafast laser inscription with a depressed cladding configuration. The cross sectional shape of the cladding waveguides is circular, surrounded by low refractive index tracks, which makes the channel waveguides as three-dimensional tubular structures. Under optical pump of 810 nm light, continuous-wave waveguide lasers at 1068 nm have been achieved at room temperature, with minimum lasing threshold of 54 mW, a maximum slope efficiency of 24% and a maximum output power of 16 mW.

© 2013 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(160.3380) Materials : Laser materials
(230.7380) Optical devices : Waveguides, channeled

ToC Category:
Integrated Optics

History
Original Manuscript: January 16, 2013
Revised Manuscript: February 27, 2013
Manuscript Accepted: February 27, 2013
Published: March 7, 2013

Citation
Yingying Ren, Javier R. Vázquez de Aldana, Feng Chen, and Huaijin Zhang, "Channel waveguide lasers in Nd:LGS crystals," Opt. Express 21, 6503-6508 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-5-6503


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron.35(6), 159–239 (2011). [CrossRef]
  2. F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photon. Rev.6(5), 622–640 (2012). [CrossRef]
  3. E. J. Murphy, Integrated optical circuits and components: Design and applications, (Marcel Dekker, 1999).
  4. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008). [CrossRef]
  5. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  6. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm³⁺:ZBLAN waveguide laser,” Opt. Lett.36(9), 1587–1589 (2011). [CrossRef] [PubMed]
  7. J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express18(15), 16035–16041 (2010). [CrossRef] [PubMed]
  8. J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J.-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A208(2), 276–283 (2011). [CrossRef]
  9. G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008). [CrossRef]
  10. C. Grivas, C. Corbari, G. Brambilla, and P. G. Lagoudakis, “Tunable, continuous-wave Ti:sapphire channel waveguide lasers written by femtosecond and picosecond laser pulses,” Opt. Lett.37(22), 4630–4632 (2012). [CrossRef] [PubMed]
  11. Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. M. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express18(24), 24994–24999 (2010). [CrossRef] [PubMed]
  12. J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process.89(1), 127–132 (2007). [CrossRef]
  13. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009). [CrossRef]
  14. A. Okhrimchuk, V. Mezentsev, A. Shestakov, and I. Bennion, “Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses,” Opt. Express20(4), 3832–3843 (2012). [CrossRef] [PubMed]
  15. Y. Jia, F. Chen, and J. R. Vazquez de Aldana, “Efficient continuous-wave laser operation at 1064 nm in Nd:YVO4 cladding waveguides produced by femtosecond laser inscription,” Opt. Express20(15), 16801–16806 (2012). [CrossRef]
  16. Y. Jia, J. R. Vazquez de Aldana, C. Romero, Y. Ren, Q. Lu, and F. Chen, “Femtosecond-laser-inscribed BiB3O6 nonlinear cladding waveguide for second-harmonic generation,” Appl. Phys. Express5(7), 072701 (2012). [CrossRef]
  17. N. Dong, F. Chen, and J. R. Vázquez de Aldana, “Efficient second harmonic generation by birefringent phase matching in femtosecond laser inscribed KTP cladding waveguides,” Phys. Status Solidi: RRL6(7), 306–308 (2012). [CrossRef]
  18. H. Fritze and H. L. Tuller, “Langasite for high-temperature bulk acoustic wave applications,” Appl. Phys. Lett.78(7), 976–978 (2001). [CrossRef]
  19. Y. Yu, J. Wang, H. Zhang, Z. Wang, H. Yu, and M. Jiang, “Continuous wave and Q-switched laser output of laser-diode-end-pumped disordered Nd:LGS laser,” Opt. Lett.34(4), 467–469 (2009). [CrossRef] [PubMed]
  20. Y. Ren, Y. Tan, F. Chen, D. Jaque, H. Zhang, J. Wang, and Q. Lu, “Optical channel waveguides in Nd:LGS laser crystals produced by proton implantation,” Opt. Express18(15), 16258–16263 (2010). [CrossRef] [PubMed]
  21. H. Liu, Y. Jia, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: Fabrication, fluorescence imaging and laser performance,” Opt. Express20(17), 18620–18629 (2012). [CrossRef] [PubMed]
  22. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009). [CrossRef]
  23. D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J.56, 703–718 (1977).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited