OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 6519–6525

Resonance enhancement of terahertz metamaterials by liquid crystals/indium tin oxide interfaces

Zhen Liu, Chia-Yi Huang, Hongwei Liu, Xinhai Zhang, and Chengkuo Lee  »View Author Affiliations

Optics Express, Vol. 21, Issue 5, pp. 6519-6525 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1311 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This work fabricates a terahertz (THz) metamaterial device, whose structure consists of split ring resonator array/ plastic substrate/ Indium Tin Oxide (ITO) film/ liquid crystals/ ITO film/ plastic substrate. Experiment results show that the resonance of the THz metamaterial device can be enhanced as voltage is applied to the liquid crystals. The enhancement will be more significant as higher voltage applied. The resonance enhancement is attributed to the fact that the liquid crystals/ITO interfaces exhibit the large difference in terms of refractive index between the two materials in THz regime. The interfaces reflect the incident electromagnetic wave and cause the reflected wave to enhance the resonance of the metamaterials. As those frequency-tunable metamaterial devices show different resonant transmittance at different frequencies, which is undesired, the liquid crystals/ITO interfaces can improve those frequency-tunable metamaterial devices with a constant transmittance at different frequencies.

© 2013 OSA

OCIS Codes
(160.3710) Materials : Liquid crystals
(160.3918) Materials : Metamaterials
(300.6495) Spectroscopy : Spectroscopy, teraherz
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:

Original Manuscript: November 6, 2012
Revised Manuscript: January 30, 2013
Manuscript Accepted: February 20, 2013
Published: March 8, 2013

Zhen Liu, Chia-Yi Huang, Hongwei Liu, Xinhai Zhang, and Chengkuo Lee, "Resonance enhancement of terahertz metamaterials by liquid crystals/indium tin oxide interfaces," Opt. Express 21, 6519-6525 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics2(5), 295–298 (2008). [CrossRef]
  2. W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B75(4), 041102 (2007). [CrossRef]
  3. H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys.43(22), 225102 (2010). [CrossRef]
  4. N. R. Han, Z. C. Chen, C. S. Lim, B. Ng, and M. H. Hong, “Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates,” Opt. Express19(8), 6990–6998 (2011). [CrossRef] [PubMed]
  5. D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial perfect absorber,” arXib:1206.4214v1 (2012).
  6. F. Zhang, W. Zhang, Q. Zhao, J. Sun, K. Qiu, J. Zhou, and D. Lippens, “Electrically controllable fishnet metamaterial based on nematic liquid crystal,” Opt. Express19(2), 1563–1568 (2011). [CrossRef] [PubMed]
  7. Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett.90(1), 011112 (2007). [CrossRef]
  8. F. Zhang, Q. Zhao, W. Zhang, J. Sun, J. Zhou, and D. Lippens, “Voltage tunable short wire-pair type of metamaterial infiltrated by nematic liquid crystal,” Appl. Phys. Lett.97(13), 134103 (2010). [CrossRef] [PubMed]
  9. S. A. Jewell, E. Hendry, T. H. Isaac, and J. R. Sambles, “Tuneable Fabry–Perot etalon for terahertz radiation,” New J. Phys.10(3), 033012 (2008). [CrossRef]
  10. Y. S. Jin, G. J. Kim, and S. G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc.49(2), 513–517 (2006).
  11. C. L. Pan and R. P. Pan, “Characterization and applications of liquid crystals in the THz frequency range,” Proc. SPIE8279, 82790I (2012). [CrossRef]
  12. E. Hecht, Optics (Addison Wesley, 2002), Chap. 4.
  13. Z. Schlesinger and A. J. Sievers, “IR surface-plasmon attenuation coefficients for Ge-coated Ag and Au metals,” Phys. Rev. B26(12), 6444–6454 (1982). [CrossRef]
  14. J. Han, X. Lu, and W. Zhang, “Terahertz transmission in subwavelength holes of asymmetric metal-dielectric interfaces: the effect of a dielectric layer,” J. Appl. Phys.103(3), 033108 (2008). [CrossRef]
  15. K. Y. Lo, C. Y. Huang, T. H. Chu, C. J. Hsu, C. H. Lin, and A. Y. G. Fuh, “Variation of nematic liquid crystal on a silver surface,” J. Opt. A, Pure Appl. Opt.8(6), 501–506 (2006).
  16. A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: recent advances and outlook,” Metamaterials (Amst.)2(1), 1–17 (2008). [CrossRef]
  17. J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express16(3), 1786–1795 (2008). [CrossRef] [PubMed]
  18. V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications (Wiley, 2008).
  19. F. Zhang, L. Kang, Q. Zhao, J. Zhou, X. Zhao, and D. Lippens, “Magnetically tunable left handed metamaterials by liquid crystal orientation,” Opt. Express17(6), 4360–4366 (2009). [CrossRef] [PubMed]
  20. X. Wang, D. H. Kwon, D. H. Werner, I. C. Khoo, A. V. Kildishev, and V. M. Shalaev, “Tunable optical negative-index metamaterials employing anisotropic liquid crystals,” Appl. Phys. Lett.91(14), 143122 (2007). [CrossRef]
  21. B. Zhu, Y. Feng, J. Zhao, C. Huang, and T. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett.97(5), 051906 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited