OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 6526–6537

High-energy mode-locked fiber lasers using multiple transmission filters and a genetic algorithm

Xing Fu and J. Nathan Kutz  »View Author Affiliations

Optics Express, Vol. 21, Issue 5, pp. 6526-6537 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1413 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We theoretically demonstrate that in a laser cavity mode-locked by nonlinear polarization rotation (NPR) using sets of waveplates and passive polarizer, the energy performance can be significantly increased by incorporating multiple NPR filters. The NPR filters are engineered so as to mitigate the multi-pulsing instability in the laser cavity which is responsible for limiting the single pulse per round trip energy in a myriad of mode-locked cavities. Engineering of the NPR filters for performance is accomplished by implementing a genetic algorithm that is capable of systematically identifying viable and optimal NPR settings in a vast parameter space. Our study shows that five NPR filters can increase the cavity energy by approximately a factor of five, with additional NPRs contributing little or no enhancements beyond this. With the advent and demonstration of electronic controls for waveplates and polarizers, the analysis suggests a general design and engineering principle that can potentially close the order of magnitude energy gap between fiber based mode-locked lasers and their solid state counterparts.

© 2013 OSA

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: November 12, 2012
Revised Manuscript: February 13, 2013
Manuscript Accepted: March 3, 2013
Published: March 8, 2013

Xing Fu and J. Nathan Kutz, "High-energy mode-locked fiber lasers using multiple transmission filters and a genetic algorithm," Opt. Express 21, 6526-6537 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B27, B63–B92 (2010). [CrossRef]
  2. H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quant. Elec.6, 1173–1185 (2000). [CrossRef]
  3. K. Tamura, E.P. Ippen, H.A. Haus, and L.E. Nelson, “77-fs Pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett.18, 1080–1082 (1993). [CrossRef] [PubMed]
  4. K. Tamura and M. Nakazawa, “Optimizing power extraction in stretched pulse fiber ring lasers,” App. Phys. Lett.67, 3691–3693 (1995). [CrossRef]
  5. G. Lenz, K. Tamura, H. A. Haus, and E. P. Ippen, “All-solid-state femtosecond source at 1.55 μm,” Opt. Lett.20, 1289–1291 (1995). [CrossRef] [PubMed]
  6. F. Ö. Ilday, J. Buckley, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser cavity,” Phys. Rev. Lett.92, 213902 (2004). [CrossRef] [PubMed]
  7. W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser.” Phys. Rev. A82, 021805 (2010). [CrossRef]
  8. B. Bale and S. Wabnitz, “Strong spectral filtering for a mode-locked similariton fiber laser,” Opt. Lett.35, 2466–2468 (2010). [CrossRef] [PubMed]
  9. A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B25, 140–148 (2008). [CrossRef]
  10. S. Namiki, E. P. Ippen, H. A. Haus, and C. X. Yu, “Energy rate equations for mode-locked lasers,” J. Opt. Soc. Am. B14, 2099–2111 (1997). [CrossRef]
  11. B. G. Bale, K. Kieu, J. N. Kutz, and F. Wise, “Transition dynamics for multi-pulsing in mode-locked lasers,” Opt. Express17, 23137–23146 (2009). [CrossRef]
  12. E. Ding, E. Shlizerman, and J. N. Kutz, “Generalized master equation for high-energy passive mode-locking: the sinusoidal Ginzburg-Landau equation,” IEEE J. Quant. Electron.47, 705–714 (2011). [CrossRef]
  13. F. Li, P. K. A. Wai, and J. N. Kutz, “Geometrical description of the onset of multi-pulsing in mode-locked laser cavities,” J. Opt. Soc. Am. B27, 2068–2077 (2010). [CrossRef]
  14. R. Herda, O. G. Okhotnikov, E. U. Rafailov, W. Sibbett, P. Crittenden, and A. Starodumov, “Semiconductor quantum-dot saturable absorber mode-locked fiber laser,” IEEE Photon. Technol. Lett.18, 157–159 (2006). [CrossRef]
  15. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol.22, 51–56 (2004). [CrossRef]
  16. S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, H. Yaguchi, M. Jablonski, and S. Y. Set, “Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibersand their application to mode-locked fiber lasers,” Opt. Lett.29, 1581–1583 (2004). [CrossRef] [PubMed]
  17. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4, 803–810 (2010). [CrossRef] [PubMed]
  18. H. Zhang, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” App. Phys. Lett.95, 141103 (2009). [CrossRef]
  19. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express17, 17630–17635 (2009). [CrossRef] [PubMed]
  20. F. Li, E. Ding, J. N. Kutz, and P. K. A. Wai, “Dual transmission filters for enhanced energy in mode-locked fiber lasers,” Opt. Express19, 23408–23419 (2011). [CrossRef]
  21. P. Grelu, W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonance as a guideline for high-energy pulse laser oscillators,” J. Opt. Soc. Am. B27, 2336–2341 (2010). [CrossRef]
  22. E. Ding, P. Grelu, and J. N. Kutz, “Dissipative soliton resonance in a passively mode-locked fiber laser,” Opt. Lett.36, 1146–1148 (2011). [CrossRef] [PubMed]
  23. X. Shen, W. Li, M. Yan, and H. Zeng, “Electronic control of nonlinear-polarization-rotation mode locking in Yb-doped fiber lasers,” Opt. Lett.37, 3426–3428 (2012). [CrossRef]
  24. E. Ding and J. N. Kutz, “Operating regimes and performance optimization in mode-locked fiber lasers,” Optics and Spectroscopy111, 166–177 (2011). [CrossRef]
  25. C. R. Menyuk, “Pulse propagation in an elliptically birefringent Kerr media,” IEEE J. Quant. Electron.25, 2674–2682 (1989). [CrossRef]
  26. C. R. Menyuk, “Nonlinear pulse propagation in birefringent optical fibers,” IEEE J. Quant. Electron.23, 174–176 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited