OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 6561–6571

Time-resolved fluorescence line-narrowing of Eu3+ in biocompatible eutectic glass-ceramics

D. Sola, R. Balda, M. Al-Saleh, J. I. Peña, and J. Fernández  »View Author Affiliations

Optics Express, Vol. 21, Issue 5, pp. 6561-6571 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3489 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The spectroscopic properties of Eu3+ in biocompatible glass and glass-ceramic eutectic rods of composition 0.8CaSiO3-0.2Ca3(PO4)2 doped with 0.5 wt% of Eu2O3 are investigated to explore their potential applications as optical probes. The samples were obtained by the laser floating zone technique. Depending on the growth rate, they exhibit three (two crystalline and one amorphous) or two (one crystalline and one amorphous) phases. The crystalline phases correspond to Ca2SiO4 and apatite-like structures. At high growth rates the system presents an amorphous arrangement which gives a glass phase. The results of time-resolved fluorescence line narrowing spectroscopy obtained under excitation within the inhomogeneous broadened 7F05D0 absorption band allow to isolate the emission from Eu3+ ions in the crystalline and amorphous environments and to accurately correlate the spectroscopic properties with the microstructure of these eutectics.

© 2013 OSA

OCIS Codes
(160.5690) Materials : Rare-earth-doped materials
(300.6320) Spectroscopy : Spectroscopy, high-resolution
(160.1435) Materials : Biomaterials

ToC Category:

Original Manuscript: December 10, 2012
Revised Manuscript: February 26, 2013
Manuscript Accepted: March 1, 2013
Published: March 8, 2013

D. Sola, R. Balda, M. Al-Saleh, J. I. Peña, and J. Fernández, "Time-resolved fluorescence line-narrowing of Eu3+ in biocompatible eutectic glass-ceramics," Opt. Express 21, 6561-6571 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. L. Hench, R. J. Splinter, T. K. Greenle, and W. C. Allen, “Bonding mechanisms at the interface of ceramic prosthetic materials,” J. Biomed. Mater. Res.2, 117–141 (1971).
  2. L. L. Hench, “Bioceramics: From Concept to Clinic,” J. Am. Ceram. Soc.74(7), 1487–1510 (1991). [CrossRef]
  3. K. De Groot and R. Le Geros, Significance of Porosity and Physical Chemistry of Calcium Phosphate Ceramics, P. Ducheyne, ed. (Ann. N.Y. Acad. Sci.,1988).
  4. P. N. de Aza, F. Guitian, and S. de Aza, “Phase diagram of wollastonite-tricalcium phosphate,” J. Am. Ceram. Soc.78(6), 1653–1656 (1995). [CrossRef]
  5. P. N. De Aza, F. Guitián, and S. De Aza, “Bioeutectic: a new ceramic material for human bone replacement,” Biomaterials18(19), 1285–1291 (1997). [CrossRef] [PubMed]
  6. M. Magallanes-Perdomo, A. H. De Aza, I. Sobrados, J. Sanz, and P. Pena, “Structure and properties of bioactive eutectic glasses based on the Ca3(PO4)2-CaSiO3-CaMg(SiO3)2 system,” Acta Biomater.8(2), 820–829 (2012). [CrossRef] [PubMed]
  7. J. Llorca and V. M. Orera, “Directionally solidified eutectic ceramic oxides,” Prog. Mater. Sci.51(6), 711–809 (2006). [CrossRef]
  8. R. I. Merino, J. A. Pardo, J. I. Peña, G. F. de la Fuente, A. Larrea, and V. M. Orera, “Luminescence properties of ZrO2-CaO eutectic crystals with ordered lamellar microstructure activated with Er3+ ions,” Phys. Rev. B56(17), 10907–10915 (1997). [CrossRef]
  9. V. M. Orera, J. I. Peña, R. I. Merino, J. A. Lazaro, J. A. Valles, and M. A. Rebolledo, “Prospects of new planar optical waveguides based on eutectic microcomposites of insulating crystals: The ZrO2(c)-CaZrO3 erbium doped system,” Appl. Phys. Lett.71(19), 2746–2748 (1997). [CrossRef]
  10. R. G. Carrodeguas and S. De Aza, “α-Tricalcium phosphate: Synthesis, properties and biomedical applications,” Acta Biomater.7(10), 3536–3546 (2011). [CrossRef] [PubMed]
  11. P. N. de Aza, F. Guitian, and S. de Aza, “A new bioactive material which transforms in situ into hydroxyapatite,” Acta Mater.46(7), 2541–2549 (1998). [CrossRef]
  12. M. Magallanes-Perdomo, P. Pena, P. N. De Aza, R. G. Carrodeguas, M. A. Rodríguez, X. Turrillas, S. De Aza, and A. H. De Aza, “Devitrification studies of wollastonite-tricalcium phosphate eutectic glass,” Acta Biomater.5(8), 3057–3066 (2009). [CrossRef] [PubMed]
  13. J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, “Spectroscopic properties of Er3+ and Nd3+ doped glasses with 0.8CaSiO3-0.2Ca3(PO4)2 eutectic composition,” J. Non-Cryst. Solids298(1), 23–31 (2002). [CrossRef]
  14. R. Balda, J. Fernández, I. Iparraguirre, J. Azkargorta, S. García-Revilla, J. I. Peña, R. I. Merino, and V. M. Orera, “Broadband laser tunability of Nd3+ ions in 0.8CaSiO3-0.2Ca3(PO4)2 eutectic glass,” Opt. Express17(6), 4382–4387 (2009). [CrossRef] [PubMed]
  15. R. Balda, R. I. Merino, J. I. Peña, V. M. Orera, and J. Fernández, “Laser spectroscopy of Nd3+ ions in glasses with the 0.8CaSiO3–0.2Ca3(PO4)2 eutectic composition,” Opt. Mater.31(9), 1319–1322 (2009). [CrossRef]
  16. D. Sola, R. Balda, J. I. Peña, and J. Fernández, “Site-selective laser spectroscopy of Nd3+ ions in 0.8CaSiO3-0.2Ca3(PO4)2 biocompatible eutectic glass-ceramics,” Opt. Express20(10), 10701–10711 (2012). [CrossRef] [PubMed]
  17. R. Balda, J. Fernández, J. L. Adam, and M. A. Arriandiaga, “Time-resolved fluorescence-line narrowing and energy-transfer studies in a Eu3+-doped fluorophosphates glass,” Phys. Rev. B54(17), 12076–12086 (1996). [CrossRef]
  18. C. Cascales, J. Fernández, and R. Balda, “Investigation of site-selective symmetries of Eu3+ ions in KPb2Cl5 by using optical spectroscopy,” Opt. Express13(6), 2141–2152 (2005). [CrossRef] [PubMed]
  19. C. Cascales, R. Balda, V. Jubera, J. P. Chaminade, and J. Fernández, “Optical spectroscopic study of Eu3+ crystal field sites in Na3La9O3(BO3)8 crystal,” Opt. Express16(4), 2653–2662 (2008). [CrossRef] [PubMed]
  20. H. Nagabhushana, B. M. Nagabhushana, M. Madesh Kumar, K. V. R. Chikkahanumantharayappa, K. V. R. Murthy, C. Shivakumara, and R. P. S. Chakradhar, “Synthesis, characterization and photoluminescence properties of CaSiO3: Eu3+ red phosphor,” Spectrochimica Acta Part A78(1), 64–69 (2011). [CrossRef]
  21. X. Kang, S. Huang, P. Yang, P. Ma, D. Yang, and J. Lin, “Preparation of luminescent and mesoporous Eu3+/Tb3+ doped calcium silicate microspheres as drug carriers via a template route,” Dalton Trans.40(9), 1873–1879 (2011). [CrossRef] [PubMed]
  22. S. J. Dhoble, N. S. Dhoble, and R. B. Pode, “Preparation and characterization of Eu3+ activated CaSiO3, (CaA)SiO3 [A = Ba or Sr] phosphors,” Bull. Mater. Sci.26(4), 377–382 (2003). [CrossRef]
  23. Y. Fan, S. Huang, J. Jiang, G. Li, P. Yang, H. Lian, Z. Cheng, and J. Lin, “Luminescent, mesoporous, and bioactive europium-doped calcium silicate (MCS: Eu3+) as a drug carrier,” J. Colloid Interface Sci.357(2), 280–285 (2011). [CrossRef] [PubMed]
  24. Q. Yu, Y. Liu, S. Wu, X. Lü, X. Huang, and X. Li, “Luminescence properties of Ca2SiO4:Eu3+ red phosphor for trichromatic white light emitting diodes,” J. Rare Earths26(6), 783–786 (2008). [CrossRef]
  25. A. Doat, M. Fanjul, F. Pellé, E. Hollande, and A. Lebugle, “Europium-doped bioapatite: a new photostable biological probe, internalizable by human cells,” Biomaterials24(19), 3365–3371 (2003). [CrossRef] [PubMed]
  26. X. H. Chuaia, H. J. Zhang, F. Sh. Li, Sh. Z. Lu, J. Lin, Sh. B. Wang, and K. Chi-Chou, “Synthesis and luminescence properties of oxyapatite NaY9Si6O26 doped with Eu3+, Tb3+, Dy3+ and Pb2+,” J. Alloy. Comp.334, 211–218 (2002).
  27. M. Karbowiak and S. Hubert, “Site-selective emission spectra of Eu3+:Ca5(PO4)3F,” J. Alloy. Comp.302(1-2), 87–93 (2000). [CrossRef]
  28. B. Piriou, D. Fahmi, J. Dexpert-Ghys, A. Taitai, and J. L. Lacout, “Unusual fluorescent properties of Eu3+ in oxyapatites,” J. Lumin.39(2), 97–103 (1987). [CrossRef]
  29. K. Madhukumar, H. K. Varma, M. Komath, T. S. Elias, V. Padmanabhan, and C. M. K. Nair, “Photoluminescence and thermoluminescence properties of tricalcium phosphate phosphors doped with dysprosium and europium,” Bull. Mater. Sci.30(5), 527–534 (2007). [CrossRef]
  30. W. Xue, S. Zhai, and H. Zheng, “Synthesis and photoluminescence properties of Eu3+-doped γ-Ca3(PO4)2,” Mater. Chem. Phys.133(1), 324–327 (2012). [CrossRef]
  31. D. Sola, F. J. Ester, P. B. Oliete, and J. I. Peña, “Study of the stability of the molten zone and the stresses induced during the growth of Al2O3–Y3Al5O12 eutectic composite by the laser floating zone technique,” J. Eur. Ceram. Soc.31(7), 1211–1218 (2011). [CrossRef]
  32. F. J. Ester, D. Sola, and J. I. Peña, “Thermal stresses in the Al2O3-ZrO2 (Y2O3) eutectic composite during the growth by the laser floating zone technique,” Bol. Soc. Esp. Ceram.47, 352–357 (2008). [CrossRef]
  33. F. J. Ester and J. I. Peña, “Analysis of the molten zone in the growth of the Al2O3-ZrO2 (Y2O3) eutectic by the laser floating zone technique,” Bol. Soc. Esp. Ceram.46, 240–246 (2007). [CrossRef]
  34. A. Oyane, H. M. Kim, T. Furuya, T. Kokubo, T. Miyazaki, and T. Nakamura, “Preparation and assessment of revised simulated body fluids,” J. Biomed. Mater. Res. A65A(2), 188–195 (2003). [CrossRef] [PubMed]
  35. Z. Gou, J. Chang, and W. Zhai, “Preparation and characterization of novel bioactive dicalcium silicate ceramics,” J. Eur. Ceram. Soc.25(9), 1507–1514 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited