OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 6689–6696

Compact 2D nonlinear photonic crystal source of beamlike path entangled photons

E. Megidish, A. Halevy, H. S. Eisenberg, A. Ganany-Padowicz, N. Habshoosh, and A. Arie  »View Author Affiliations


Optics Express, Vol. 21, Issue 6, pp. 6689-6696 (2013)
http://dx.doi.org/10.1364/OE.21.006689


View Full Text Article

Enhanced HTML    Acrobat PDF (1229 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a method to generate entangled photons with controlled spatial shape by parametric down conversion (PDC) in a 2D nonlinear crystal. A compact and novel crystal source was designed and fabricated, generating directly path entangled photons without the use of additional beam-splitters. This crystal supports two PDC processes, emitting biphotons into two beamlike modes simultaneously. Two coherent path entangled amplitudes of biphotons were created and their interference observed. Our method enables the generation of entangled photons with controlled spatial, spectral and polarization properties.

© 2013 OSA

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(270.0270) Quantum optics : Quantum optics

ToC Category:
Quantum Optics

History
Original Manuscript: January 16, 2013
Revised Manuscript: February 24, 2013
Manuscript Accepted: February 24, 2013
Published: March 11, 2013

Citation
E. Megidish, A. Halevy, H. S. Eisenberg, A. Ganany-Padowicz, N. Habshoosh, and A. Arie, "Compact 2D nonlinear photonic crystal source of beamlike path entangled photons," Opt. Express 21, 6689-6696 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-6-6689


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995). [CrossRef] [PubMed]
  2. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962). [CrossRef]
  3. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992). [CrossRef]
  4. T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics 3, 395–398 (2009). [CrossRef]
  5. N. Voloch-Bloch, K. Shemer, A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Twisting light by nonlinear photonic crystals,” Phys. Rev. Lett. 108, 233902 (2012). [CrossRef]
  6. J. P. Torres, A. Alexandrescu, S. Carrasco, and L. Torner, “Quasi-phase-matching engineering for spatial control of entangled two-photon states,” Opt. Lett. 29, 376–378 (2004). [CrossRef] [PubMed]
  7. H. Y. Leng, X. Q. Yu, Y. X. Gong, P. Xu, Z. D. Xie, H. Jin, C. Zhang, and S. N. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nat. Commun. 2, 429 (2011). [CrossRef] [PubMed]
  8. R. Shiloh and A. Arie, “Spectral and temporal holograms with nonlinear optics,” Opt. Lett. 37, 3591–3593 (2012). [CrossRef] [PubMed]
  9. R. Lifshitz, A. Arie, and A. Bahabad, “Photonic quasicrystals for nonlinear optical frequency conversion,” Phys. Rev. Lett. 95, 133901 (2005). [CrossRef] [PubMed]
  10. S. N. Zhu, Y. Y Zhu, and N. B Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843–846 (1997). [CrossRef]
  11. V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81, 4136–4139 (1998). [CrossRef]
  12. N. Broderick, G. Ross, H. Offerhaus, D. Richardson, and D. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000). [CrossRef] [PubMed]
  13. J. J. Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen, “Optimal frequency measurements with maximally correlated states,” Phys. Rev. A 54, R4649–R4652 (1996). [CrossRef] [PubMed]
  14. J. G. Rarity, P. R. Tapster, E. Jakeman, T. Larchuk, R. A. Campos, and M. C. Teich, “Two-photon interference in a Mach-Zehnder interferometer,” Phys. Rev. Lett. 65, 1348–1351 (1990). [CrossRef] [PubMed]
  15. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987). [CrossRef] [PubMed]
  16. M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, “Super-resolving phase measurements with a multiphoton entangled state,” Nature (London) 429, 161–164 (2004). [CrossRef]
  17. T. Nagata, R. Okamoto, J. L. OBrien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science 316, 726–729 (2007). [CrossRef] [PubMed]
  18. I. Afek, O. Ambar, and Y. Silberberg, “High-NOON states by mixing quantum and classical light,” Science 328, 879–881 (2010). [CrossRef] [PubMed]
  19. C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004). [CrossRef]
  20. T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006). [CrossRef]
  21. Y.-H. Kim, “Quantum interference with beamlike type-II spontaneous parametric down-conversion,” Phys. Rev. A 68, 013804 (2003). [CrossRef]
  22. A. Arie, N. Habshoosh, and A. Bahabad, “Quasi phase matching in two-dimensional nonlinear photonic crystals,” Opt. Quant. Electron. 39, 361–375 (2007). [CrossRef]
  23. Y.-X. Gong, P. Xu, Y. F. Bai, J. Yang, H. Y. Leng, Z. D. Xie, and S. N. Zhu, “Multiphoton path-entanglement generation by concurrent parametric down-conversion in a single ?(2) nonlinear photonic crystal,” Phys. Rev. A 86, 023835 (2012). [CrossRef]
  24. J. Jacobson, G. Björk, I. Chuang, and Y. Yamamoto, “Photonic de Broglie Waves,” Phys. Rev. Lett. 74, 4835–4838 (1995). [CrossRef] [PubMed]
  25. I. Dolev, A. Ganany-Padowicz, O. Gayer, A. Arie, J. Mangin, and G. Gadret, “Linear and nonlinear optical properties of MgO:LiTaO3,” Appl. Phys. B 96, 423–432 (2009). [CrossRef]
  26. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1992). [CrossRef]
  27. D. Branning, S. Bhandari, and M. Beck, “Low-cost coincidence-counting electronics for undergraduate quantum optics,” Am. J. Phys. 77, 667–670 (2009). [CrossRef]
  28. K. Edamatsu, R. Shimizu, and T. Itoh, “Measurement of the photonic de broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion,” Phys. Rev. Lett. 89, 213601 (2002). [CrossRef] [PubMed]
  29. M. J. Holland and K. Burnett, “Interferometric detection of optical phase shifts at the Heisenberg limit,” Phys. Rev. Lett. 71, 1355–1358 (1993). [CrossRef] [PubMed]
  30. Y.-X. Gong, P. Xu, J. Shi, L. Chen, X. Q. Yu, P. Xue, and S. N. Zhu, “Generation of polarization-entangled photon pairs via concurrent spontaneous parametric downconversions in a single ?(2) nonlinear photonic crystal,” Opt. Lett. 37, 4374–4376 (2012). [CrossRef] [PubMed]
  31. H. Jin, P. Xu, X. W. Luo, H. Y. Leng, Y. X. Gong, and S. N. Zhu, “Compact engineering of path entangled sources from a monolithic quadratic nonlinear photonic crystal,” http://arxiv.org/abs/1302.0162.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited