OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 6697–6706

Light absorber based on nano-spheres on a substrate reflector

Jin Dai, Fei Ye, Yiting Chen, Mamoun Muhammed, Min Qiu, and Min Yan  »View Author Affiliations


Optics Express, Vol. 21, Issue 6, pp. 6697-6706 (2013)
http://dx.doi.org/10.1364/OE.21.006697


View Full Text Article

Enhanced HTML    Acrobat PDF (2571 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We systematically study a type of plasmonic light absorber based on a monolayer of gold nano-spheres with less than 30 nm in diameters deposited on top of a continuous gold substrate. The influences of particle size, inter-particle distance, particle-substrate spacer size etc on the resonance are studied thoroughly with a 3D finite-element method. We identified that the high-absorption resonance is mainly due to gap plasmon (coupled through particle bodies) when the separation between neighboring nano-spheres is small enough, such as close to 1 nm; at larger particle separations, the resonance is dominated by particle dipoles (coupled through the host dielectric). Experimentally, an absorber was fabricated based on chemically-synthesized gold nanoparticles coated with silica shell. The absorber shows a characteristic absorption band around 810 nm with a maximum absorbance of approximately 90%, which agrees reasonably well with our numerical calculation. The fabrication technique can be easily adapted for devising efficient light absorbers of large areas.

© 2013 OSA

OCIS Codes
(160.3918) Materials : Metamaterials
(220.4241) Optical design and fabrication : Nanostructure fabrication
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

History
Original Manuscript: December 14, 2012
Revised Manuscript: March 3, 2013
Manuscript Accepted: March 4, 2013
Published: March 11, 2013

Citation
Jin Dai, Fei Ye, Yiting Chen, Mamoun Muhammed, Min Qiu, and Min Yan, "Light absorber based on nano-spheres on a substrate reflector," Opt. Express 21, 6697-6706 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-6-6697


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics (Springer, P.O. Box 17, 3300 AA Dordrecht, The Netherlands, 2007). [CrossRef]
  2. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107, 668–677 (2003). [CrossRef]
  3. E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5, 1065–1070 (2005). [CrossRef] [PubMed]
  4. M. Burresi, D. Diessel, D. v. Oosten, S. Linden, M. Wegener, and L. Kuipers, “Negative-index metamaterials: Looking into the unit cell,” Nano Lett.10, 2480–2483 (2010). [CrossRef] [PubMed]
  5. C. J. Brinker, Y. Lu, A. Sellinger, and H. Fan, “Evaporation-induced self-assembly: Nanostructures made easy,” Adv. Mater.11, 579–585 (1999). [CrossRef]
  6. X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6, 2550–2557 (2012). [CrossRef] [PubMed]
  7. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010). [CrossRef] [PubMed]
  8. K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in gaas solar cells,” Appl. Phys. Lett.93, 121904 –121904–3 (2008). [CrossRef]
  9. Y. Xiong, R. Long, D. Liu, X. Zhong, C. Wang, Z.-Y. Li, and Y. Xie, “Solar energy conversion with tunable plasmonic nanostructures for thermoelectric devices,” Nanoscale4, 4416–4420 (2012). [CrossRef] [PubMed]
  10. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10, 2342–2348 (2010). [CrossRef] [PubMed]
  11. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, 251104 (2012). [CrossRef]
  12. A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett.11, 4366–4369 (2011). [CrossRef] [PubMed]
  13. M. Yan, “Metal-insulator-metal light absorber: a continuous structure,” J. Opt.15, 025006 (2013). [CrossRef]
  14. M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater.23, 5410–5414 (2011). [CrossRef] [PubMed]
  15. L. M. Liz-Marzán, M. Giersig, and P. Mulvaney, “Synthesis of nanosized gold-silica core-shell particles,” Langmuir12, 4329–4335 (1996). [CrossRef]
  16. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]
  17. H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering,” Phys. Rev. Lett.83, 4357–4360 (1999). [CrossRef]
  18. S. Maier, Plasmonics: Fundamentals And Applications (Springer, 2007).
  19. S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature453, 757–760 (2008). [CrossRef] [PubMed]
  20. C. Cirac’i, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337, 1072–1074 (2012). [CrossRef]
  21. K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature491, 574–577 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited