OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 6707–6717

Highly efficient heralding of entangled single photons

Sven Ramelow, Alexandra Mech, Marissa Giustina, Simon Gröblacher, Witlef Wieczorek, Jörn Beyer, Adriana Lita, Brice Calkins, Thomas Gerrits, Sae Woo Nam, Anton Zeilinger, and Rupert Ursin  »View Author Affiliations

Optics Express, Vol. 21, Issue 6, pp. 6707-6717 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (966 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Single photons are an important prerequisite for a broad spectrum of quantum optical applications. We experimentally demonstrate a heralded single-photon source based on spontaneous parametric down-conversion in collinear bulk optics, and fiber-coupled bolometric transition-edge sensors. Without correcting for background, losses, or detection inefficiencies, we measure an overall heralding efficiency of 83 %. By violating a Bell inequality, we confirm the single-photon character and high-quality entanglement of our heralded single photons which, in combination with the high heralding efficiency, are a necessary ingredient for advanced quantum communication protocols such as one-sided device-independent quantum key distribution.

© 2013 OSA

OCIS Codes
(040.3780) Detectors : Low light level
(040.5570) Detectors : Quantum detectors
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: November 21, 2012
Revised Manuscript: December 24, 2012
Manuscript Accepted: December 31, 2012
Published: March 11, 2013

Sven Ramelow, Alexandra Mech, Marissa Giustina, Simon Gröblacher, Witlef Wieczorek, Jörn Beyer, Adriana Lita, Brice Calkins, Thomas Gerrits, Sae Woo Nam, Anton Zeilinger, and Rupert Ursin, "Highly efficient heralding of entangled single photons," Opt. Express 21, 6707-6717 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. G. Rarity, K. D. Ridley, and P. R. Tapster, “Absolute measurement of detector quantum efficiency using parametric downconversion,” Appl. Opt.26(21), 4616–4619 (1987). [CrossRef] [PubMed]
  2. P. G. Kwiat, A. M. Steinberg, R. Y. Chiao, P. H. Eberhard, and M. D. Petroff, “Absolute efficiency and time-response measurement of single-photon detectors,” Appl. Opt.33(10), 1844–1853 (1994). [CrossRef] [PubMed]
  3. A. L. Migdall, R. U. Datla, A. Sergienko, J. S. Orszak, and Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia32(6), 479–483 (1995). [CrossRef]
  4. A. Avella, G. Brida, I. P. Degiovanni, M. Genovese, M. Gramegna, L. Lolli, E. Monticone, C. Portesi, M. Rajteri, M. L. Rastello, E. Taralli, P. Traina, and M. White, “Self consistent, absolute calibration technique for photon number resolving detectors,” Opt. Exp.19(23), 23249–23257 (2011). [CrossRef]
  5. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74(1), 145–195March (2002). [CrossRef]
  6. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Duscaronek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys.81(3), 1301–1350 (2009). [CrossRef]
  7. J-W. Pan, Z-B. Chen, C-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys.84(2), 777–838 (2012). [CrossRef]
  8. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys.79(1), 135–174 (2007). [CrossRef]
  9. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature, 464(7285), 45–53 (2010). [CrossRef] [PubMed]
  10. T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Single photons on pseudodemand from stored parametric down-conversion,” Phys. Rev. A66(4), 042303 (2002). [CrossRef]
  11. E. Jeffrey, N. A. Peters, and P. G. Kwiat, “Towards a periodic deterministic source of arbitrary single-photon states,” New J. Phys6, 100 (2004). [CrossRef]
  12. A. L. Migdall, D. Branning, and S. Castelletto, “Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source,” Phys Rev A66(5), 053805 (2002). [CrossRef]
  13. J. H. Shapiro and F. N. Wong, “On-demand single-photon generation using a modular array of parametric downconverters with electro-optic polarization controls,” Opt. Lett.32(18), 2698–2700 (2007). [CrossRef] [PubMed]
  14. R. Raussendorf, D. E. Browne, and H. J. Briegel, “Measurement-based quantum computation on cluster states,” Phys. Rev. A68, 022312 (2003). [CrossRef]
  15. C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, “One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering,” Phys. Rev. A85(1), 010301 (2012). [CrossRef]
  16. D. H. Smith, G. Gillett, M. P. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. Nam, and A. G. White, “Conclusive quantum steering with superconducting transition-edge sensors,” Nature Communications3, 625 (2012). [CrossRef]
  17. Y-G. Tang and Q. Liu, Private communication.
  18. F. Selleri and A. Zeilinger, “Local deterministic description of Einstein-Podolsky-Rosen experiments,” Found. Phys.18, 1141–1158 (1988). [CrossRef]
  19. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity source of Polarization-Entangled photon pairs,” Phys. Rev. Lett.75(24), 4337–4341 (1995). [CrossRef] [PubMed]
  20. T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A.73(1), 012316 (2006). [CrossRef]
  21. A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Exp.15(23), 15377–15386 (2007). [CrossRef]
  22. P. Trojek and H. Weinfurter, “Collinear source of polarization-entangled photon pairs at nondegenerate wavelengths,” Appl. Phys. Lett.92(21), 211103 (2008). [CrossRef]
  23. C. Söller, O. Cohen, B. J. Smith, I. A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A83(3), 031806 (2011). [CrossRef]
  24. B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. M. Wiseman, R. Ursin, and A. Zeilinger, “Loophole-free Einstein-Podolsky-Rosen experiment via quantum steering,” New J. Phys14(5), 053030 (2012). [CrossRef]
  25. A. E. Lita, A. J. Miller, and S. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Exp.16(5), 3032–3040 (2008). [CrossRef]
  26. R. S. Bennink, “Optimal collinear gaussian beams for spontaneous parametric down-conversion,” Phys. Rev. A81(5), 053805 (2010). [CrossRef]
  27. D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Opt. Exp.19(2), 870–875 (2011). [CrossRef]
  28. K. D. Irwin, “An application of electrothermal feedback for high resolution cryogenic particle detection,” Appl. Phys. Lett.66(15), 1998–2000 (1995). [CrossRef]
  29. A. J. Miller, A. E. Lita, B. Calkins, I. Vayshenker, S. M. Gruber, and S. Nam, “Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent,” Opt. Exp.19(10), 9102–9110 (2011). [CrossRef]
  30. D. Drung, C. Assmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, and T. Schurig, “Highly sensitive and easy-to-use SQUID sensors,” IEEE Trans. on Appl. Superc.17, 699–704 (2007). [CrossRef]
  31. D. Rosenberg, A. E. Lita, A. J. Miller, and S. Nam, “Noise-free high-efficiency photon-number-resolving detectors,” Phys. Rev. A71(6), 061803 (2005). [CrossRef]
  32. M. Giustina, in preparation.
  33. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett.23, 880–884 (1969). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited