OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 6724–6732

Dual-rail nanobeam microfiber-coupled resonator

Hee-Jin Lim, Chang-Min Lee, Byeong-Hyeon Ahn, and Yong-Hee Lee  »View Author Affiliations

Optics Express, Vol. 21, Issue 6, pp. 6724-6732 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1386 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A microfiber-coupled dual-rail nanobeam resonator is proposed and demonstrated. The dual-rail scheme is employed to encourage the overlap between the light emitter and the air mode. The one-dimensional resonant cavity is formed by contacting a curved microfiber with the dual-rail nanobeam. The finite width of the dual-rail nanobeam turns out to be advantageous for both out-coupling with the microfiber and broader tuning of resonant wavelength. By employing InGaAsP quantum well gain medium, a simple and robust reconfigurable laser is created. Experimentally we measure a quality factor of 11,000 and out-coupling efficiency of 30%. The spontaneous emission factor (β) of the nanobeam laser is measured to be 0.16. Computationally we identified a resonant cavity with a quality factor over 6 × 105 and out-coupling efficiency over 90%.

© 2013 OSA

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(140.3945) Lasers and laser optics : Microcavities
(160.5298) Materials : Photonic crystals

ToC Category:
Lasers and Laser Optics

Original Manuscript: December 28, 2012
Revised Manuscript: March 2, 2013
Manuscript Accepted: March 4, 2013
Published: March 11, 2013

Hee-Jin Lim, Chang-Min Lee, Byeong-Hyeon Ahn, and Yong-Hee Lee, "Dual-rail nanobeam microfiber-coupled resonator," Opt. Express 21, 6724-6732 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010). [CrossRef]
  2. M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Nötzel, and M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, (2012). [CrossRef]
  3. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express13(7), 2678–2687 (2005). [CrossRef] [PubMed]
  4. T. Uesugi, B.-S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express14(1), 377–386 (2006). [CrossRef] [PubMed]
  5. E. Weidner, S. Combrie, A. de Rossi, N.-V.-Q. Tran, and S. Cassette, “Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity,” Appl. Phys. Lett.90(10), 101118 (2007). [CrossRef]
  6. L.-D. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, “Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity,” Opt. Express17(23), 21108–21117 (2009). [CrossRef] [PubMed]
  7. E. Stock, W. Unrau, A. Lochmann, J. A. Töfflinger, M. Öztürk, A. I. Toropov, A. K. Bakarov, V. A. Haisler, and D. Bimberg, “High-speed single-photon source based on self-organized quantum dots,” Semicond. Sci. Technol.26(1), 014003 (2011). [CrossRef]
  8. Q. Quan, F. Vollmer, I. B. Burgess, P. B. Deotare, I. Frank, S. Tang, R. Illic, and M. Loncar, “Ultrasensitive On-Chip Photonic Crystal Nanobeam Sensor using Optical Bistability,” in Quantum Electronics and Laser Science Conference (Optical Society of America, 2011), paper QThH6.
  9. M. Notomi, E. Kuramochi, and H. Taniyama, “Ultrahigh-Q nanocavity with 1D photonic gap,” Opt. Express16(15), 11095–11102 (2008). [CrossRef] [PubMed]
  10. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94(12), 121106 (2009). [CrossRef]
  11. Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett.96(20), 203102 (2010). [CrossRef]
  12. B.-H. Ahn, J.-H. Kang, M.-K. Kim, J.-H. Song, B. Min, K. S. Kim, and Y.-H. Lee, “One-dimensional parabolic-beam photonic crystal laser,” Opt. Express18(6), 5654–5660 (2010). [CrossRef] [PubMed]
  13. Y. Gong, B. Ellis, G. Shambat, T. Sarmiento, J. S. Harris, and J. Vučković, “Nanobeam photonic crystal cavity quantum dot laser,” Opt. Express18(9), 8781–8789 (2010). [CrossRef] [PubMed]
  14. Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Loncar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett.97(5), 051104 (2010). [CrossRef]
  15. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459(7246), 550–555 (2009). [CrossRef] [PubMed]
  16. M.-K. Kim, I.-K. Hwang, M.-K. Seo, and Y.-H. Lee, “Reconfigurable microfiber-coupled photonic crystal resonator,” Opt. Express15(25), 17241–17247 (2007). [CrossRef] [PubMed]
  17. J.-Y. Kim, M.-K. Kim, M.-K. Seo, S.-H. Kwon, J.-H. Shin, and Y.-H. Lee, “Two-dimensionally relocatable microfiber-coupled photonic crystal resonator,” Opt. Express17(15), 13009–13016 (2009). [CrossRef] [PubMed]
  18. M.-K. Kim, J.-Y. Kim, J.-H. Kang, B.-H. Ahn, and Y.-H. Lee, “On-demand photonic crystal resonators,” Laser & Photon. Rev.5(4), 479–495 (2011). [CrossRef]
  19. S. L. Chuang, Physics of Photonic Devices (John Wiley & Sons, 2009), Chap. 7.
  20. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater.4(3), 207–210 (2005). [CrossRef]
  21. B.-S. Song, T. Asano, and S. Noda, “Physical origin of the small modal volume of ultra-high- Q photonic double-heterostructure nanocavities,” New J. Phys.8(9), 209 (2006). [CrossRef]
  22. I. Karnadi, J.-Y. Kim, B.-H. Ahn, H.-J. Lim, and Y.-H. Lee, “Efficient photon collection from reconfigurable photonic crystal slab resonator operating at short wavelengths,” J. Opt. Soc. Am. B29(10), 2669 (2012). [CrossRef]
  23. J. J. Childs, K. An, R. R. Dasari, and M. S. Feld, “Single atom emission in an optical resonator,” in Cavity Quantum Electrodynamics, P. R. Berman, ed. (Academic Press, 1994), pp. 325–379.
  24. P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong Dephasing Time in InGaAs Quantum Dots,” Phys. Rev. Lett.87(15), 157401 (2001). [CrossRef] [PubMed]
  25. S. Kim, B.-H. Ahn, J.-Y. Kim, K.-Y. Jeong, K. S. Kim, and Y.-H. Lee, “Nanobeam photonic bandedge lasers,” Opt. Express19(24), 24055–24060 (2011). [CrossRef] [PubMed]
  26. H. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  27. I.-K. Hwang, S.-K. Kim, J.-K. Yang, S.-H. Kim, S. H. Lee, and Y.-H. Lee, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett.87(13), 131107 (2005). [CrossRef]
  28. L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (John Wiley & Sons, 2011).
  29. S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett.96(12), 127404 (2006). [CrossRef] [PubMed]
  30. H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, and Y.-H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron.38(10), 1353–1365 (2002). [CrossRef]
  31. H. Y. Ryu, M. Notomi, E. Kuramoti, and T. Segawa, “Large spontaneous emission factor (> 0.1) in the photonic crystal monopole-mode laser,” Appl. Phys. Lett.84(7), 1067–1069 (2004). [CrossRef]
  32. K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express15(12), 7506–7514 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited