OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 6756–6763

Interband scattering in a slow light photonic crystal waveguide under electro-optic tuning

Jun Tan, Richard A. Soref, and Wei Jiang  »View Author Affiliations

Optics Express, Vol. 21, Issue 6, pp. 6756-6763 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1146 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The evolution of the transmission spectrum of a photonic crystal waveguide under electro-optic tuning was studied in the band of an odd TE-like mode. The spectral signature of the interband scattering from the TM-like mode to the odd TE-like mode was characterized at various bias levels. The shift of the odd-mode band was determined based on a statistical approach to overcome the spectral noise. Simulations were performed to explain the spectral shift based on electro-optic and thermo-optic effects in the active photonic crystal structures. Potential impact of interband scattering on indirect interband-transition-based optical isolators is discussed and potential remedies are offered.

© 2013 OSA

OCIS Codes
(230.2090) Optical devices : Electro-optical devices
(230.3240) Optical devices : Isolators
(290.5880) Scattering : Scattering, rough surfaces
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: November 15, 2012
Revised Manuscript: January 23, 2013
Manuscript Accepted: January 23, 2013
Published: March 11, 2013

Jun Tan, Richard A. Soref, and Wei Jiang, "Interband scattering in a slow light photonic crystal waveguide under electro-optic tuning," Opt. Express 21, 6756-6763 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. Yu and S. H. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics3(2), 91–94 (2009). [CrossRef]
  2. H. Lira, Z. F. Yu, S. H. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett.109(3), 033901 (2012). [CrossRef] [PubMed]
  3. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438(7064), 65–69 (2005). [CrossRef] [PubMed]
  4. L. L. Gu, W. Jiang, X. N. Chen, L. Wang, and R. T. Chen, “High speed silicon photonic crystal waveguide modulator for low voltage operation,” Appl. Phys. Lett.90(7), 071105 (2007). [CrossRef]
  5. H. C. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura, and T. Baba, “10 gb/s operation of photonic crystal silicon optical modulators,” Opt. Express19(14), 13000–13007 (2011). [CrossRef] [PubMed]
  6. B. Corcoran, M. D. Pelusi, C. Monat, J. Li, L. O’Faolain, T. F. Krauss, and B. J. Eggleton, “Ultracompact 160 Gbaud all-optical demultiplexing exploiting slow light in an engineered silicon photonic crystal waveguide,” Opt. Lett.36(9), 1728–1730 (2011). [CrossRef] [PubMed]
  7. B. Cluzel, D. Gerard, E. Picard, T. Charvolin, V. Calvo, E. Hadji, and F. de Fornel, “Experimental demonstration of bloch mode parity change in photonic crystal waveguide,” Appl. Phys. Lett.85(14), 2682–2684 (2004). [CrossRef]
  8. J. Tan, M. Lu, A. Stein, and W. Jiang, “High-purity transmission of a slow light odd mode in a photonic crystal waveguide,” Opt. Lett.37(15), 3189–3191 (2012). [CrossRef] [PubMed]
  9. W. Song, R. A. Integlia, and W. Jiang, “Slow light loss due to roughness in photonic crystal waveguides: An analytic approach,” Phys. Rev. B82(23), 235306 (2010). [CrossRef]
  10. R. A. Integlia, W. Song, J. Tan, and W. Jiang, “Longitudinal and angular dispersions in photonic crystals: A synergistic perspective on slow light and superprism effects,” J. Nanosci. Nanotechnol.10(3), 1596–1605 (2010). [CrossRef] [PubMed]
  11. A. H. Atabaki, E. S. Hosseini, B. Momeni, and A. Adibi, “Enhancing the guiding bandwidth of photonic crystal waveguides on silicon-on-insulator,” Opt. Lett.33(22), 2608–2610 (2008). [CrossRef] [PubMed]
  12. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987). [CrossRef]
  13. M. Soljacić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater.3(4), 211–219 (2004). [CrossRef] [PubMed]
  14. Y. Q. Jiang, W. Jiang, L. L. Gu, X. N. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett.87(22), 221105 (2005). [CrossRef]
  15. W. Jiang, L. Gu, X. Chen, and R. T. Chen, “Photonic crystal waveguide modulators for silicon photonics: Device physics and some recent progress,” Solid-State Electron.51(10), 1278–1286 (2007). [CrossRef]
  16. M. Chahal, G. K. Celler, Y. Jaluria, and W. Jiang, “Thermo-optic characteristics and switching power limit of slow-light photonic crystal structures on a silicon-on-insulator platform,” Opt. Express20(4), 4225–4231 (2012). [CrossRef] [PubMed]
  17. E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B72(16), 161318 (2005). [CrossRef]
  18. S. Combrie, N. V. Q. Tran, E. Weidner, A. De Rossi, S. Cassette, P. Hamel, Y. Jaouen, R. Gabet, and A. Talneau, “Investigation of group delay, loss, and disorder in a photonic crystal waveguide by low-coherence reflectometry,” Appl. Phys. Lett.90(23), 231104 (2007). [CrossRef]
  19. M. S. Kang, A. Butsch, and P. S. J. Russell, “Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre,” Nat. Photonics5(9), 549–553 (2011). [CrossRef]
  20. A. Hosseini, X. C. Xu, H. Subbaraman, C. Y. Lin, S. Rahimi, and R. T. Chen, “Large optical spectral range dispersion engineered silicon-based photonic crystal waveguide modulator,” Opt. Express20(11), 12318–12325 (2012). [CrossRef] [PubMed]
  21. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics4(8), 495–497 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited