OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 6794–6806

Simulations of high-Q optical nanocavities with a gradual 1D bandgap

Bjorn Maes, Jiří Petráček, Sven Burger, Pavel Kwiecien, Jaroslav Luksch, and Ivan Richter  »View Author Affiliations

Optics Express, Vol. 21, Issue 6, pp. 6794-6806 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1026 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



High-quality cavities in hybrid material systems have various interesting applications. We perform a comprehensive modeling comparison on such a design, where confinement in the III–V material is provided by gradual photonic crystal tuning, a recently proposed method offering strong resonances. The III–V cavity couples to an underlying silicon waveguide. We report on the device properties using four simulation methods: finite-difference time-domain (FDTD), finite-element method (FEM), bidirectional eigenmode propagation (BEP) and aperiodic rigorous coupled wave analysis (aRCWA). We explain the major confinement and coupling effects, consistent with the simulation results. E.g. for strong waveguide coupling, we find quantitative discrepancies between the methods, which establishes the proposed high-index-contrast, lossy, 3D structure as a challenging modeling benchmark.

© 2013 OSA

OCIS Codes
(230.5750) Optical devices : Resonators
(250.5300) Optoelectronics : Photonic integrated circuits
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: August 17, 2012
Revised Manuscript: January 30, 2013
Manuscript Accepted: February 3, 2013
Published: March 11, 2013

Bjorn Maes, Jiří Petráček, Sven Burger, Pavel Kwiecien, Jaroslav Luksch, and Ivan Richter, "Simulations of high-Q optical nanocavities with a gradual 1D bandgap," Opt. Express 21, 6794-6806 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Notomi, E. Kuramochi, and H. Taniyama, “Ultrahigh-Q nanocavity with 1D photonic gap,” Opt. Express16, 11095–11102 (2008). [CrossRef]
  2. E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y. G. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express18, 15859–15869 (2010). [CrossRef]
  3. D. Dai, J. Bauters, and J. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light. Sci. Appl.1, e1 (2012). [CrossRef]
  4. G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III–V/silicon photonics for on-chip and inter-chip optical interconnects,” Laser Photonics Rev.4, 751–779 (2010). [CrossRef]
  5. G. Roelkens, J. Brouckaert, D. Van Thourhout, R. Baets, R. Notzel, and M. Smit, “Adhesive bonding of InP/InGaAsP dies to processed silicon-on-insulator wafers using DVS-bis-benzocyclobutene,” J. Electrochem. Soc.153, G1015–G1019 (2006). [CrossRef]
  6. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, 2000).
  7. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Comm.181, 687–702 (2010). [CrossRef]
  8. V. A. Mandelstahm and H. S. Taylor, “Harmonic inversion of time signals,” J. Chem. Phys.107, 6756–6769 (1997). [CrossRef]
  9. G. Sztefka and H. P. Nolting, “Bidirectional eigenmode propagation for large refractive index steps,” Photonic Tech. Lett.5, 554–557 (1993). [CrossRef]
  10. J. Mu and W. P. Huang, “Simulation of three-dimensional waveguide discontinuities by a full-vector mode-matching method based on finite-difference schemes,” Opt. Express16, 18152–18163 (2008). [CrossRef]
  11. P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron.33, 327–341 (2001). [CrossRef]
  12. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A13, 1024–1035 (1996). [CrossRef]
  13. N. Gregersen, S. Reitzenstein, C. Kistner, M. Strauss, C. Schneider, S. Höfling, L. Worschech, A. Forchel, T. R. Nielsen, J. Mørk, and J. M. Gérard, “Numerical and experimental study of the Q factor of high-Q micropillar cavities,” IEEE J. Quantum Electron.46, 1470–1483 (2010). [CrossRef]
  14. J. Pomplun, S. Burger, L. Zschiedrich, and F. Schmidt, “Adaptive finite element method for simulation of optical nano structures,” Phys. Stat. Sol. (b)244, 3419–3434 (2007). [CrossRef]
  15. S. Burger, F. Schmidt, and L. Zschiedrich, “Numerical investigation of photonic crystal microcavities in silicon-on-insulator waveguides,” in Photonic and Phononic Crystal Materials and Devices X, A. Adibi, S. Y. Lin, and A. Scherer, eds., Proc. SPIE7609, 76091Q (2010). [CrossRef]
  16. S. Burger, J. Pomplun, F. Schmidt, and L. Zschiedrich, “Finite-element method simulations of high-Q nanocavities with 1D photonic bandgap,” in Physics and Simulation of Optoelectronic Devices XIX, B. Witzigmann, F. Henneberger, Y. Arakawa, and A. Freundlich, eds., Proc. SPIE7933, 79330T (2011). [CrossRef]
  17. M. Karl, B. Kettner, S. Burger, F. Schmidt, H. Kalt, and M. Hetterich, “Dependencies of micro-pillar cavity quality factors calculated with finite element methods,” Opt. Express17, 1144–1158 (2009). [CrossRef]
  18. L. Li, “Note on the S-matrix propagation algorithm,” J. Opt. Soc. Am. A20, 655–660 (2003). [CrossRef]
  19. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A14, 2758–2767 (1997). [CrossRef]
  20. E. Silberstein, P. Lalanne, J. P. Hugonin, and Q. Cao, “Use of grating theories in integrated optics,” J. Opt. Soc. Am. A18, 2865–2875 (2001). [CrossRef]
  21. P. Lalanne and J. P. Hugonin, “Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization,” J. Opt. Soc. Am. A22, 1844–1849 (2005). [CrossRef]
  22. G. Granet, “Reformulation of the lamellar grating problem through the concept of adaptive spatial resolution,” J. Opt. Soc. Am. A16, 2510–2516 (1999). [CrossRef]
  23. J. Čtyroký, P. Kwiecien, and I. Richter, “Fourier series-based bidirectional propagation algorithm with adaptive spatial resolution,” J. Lightwave Technol.28, 2969–2976 (2010). [CrossRef]
  24. Z. Y. Li and K. M. Ho, “Application of strucural symmetries in the plane-wave-based transfer-matrix method for 3D photonic crystal waveguides,” Phys. Rev. B24, 245117-1-20 (2003).
  25. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express8, 173–190 (2001). [CrossRef]
  26. H. T. Hattori, C. Seassal, X. Letartre, P. Rojo-Romeo, J. L. Leclercq, P. Viktorovitch, M. Zussy, L. di Cioccio, L. El Melhaoui, and J. M. Fedeli, “Coupling analysis of heterogeneous integrated InP based photonic crystal triangular lattice band-edge lasers and silicon waveguides,” Opt. Express13, 3310–3322 (2005). [CrossRef]
  27. Y. Halioua, A. Bazin, P. Monnier, T. J. Karle, G. Roelkens, I. Sagnes, R. Raj, and F. Raineri, “Hybrid III–V semiconductor/silicon nanolaser,” Opt. Express19, 9221–9231 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited