OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 6807–6825

Physical optics solution for the scattering of a partially-coherent wave from a statistically rough material surface

Milo W. Hyde, IV, Santasri Basu, Mark F. Spencer, Salvatore J. Cusumano, and Steven T. Fiorino  »View Author Affiliations


Optics Express, Vol. 21, Issue 6, pp. 6807-6825 (2013)
http://dx.doi.org/10.1364/OE.21.006807


View Full Text Article

Enhanced HTML    Acrobat PDF (1944 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The scattering of a partially-coherent wave from a statistically rough material surface is investigated via derivation of the scattered field cross-spectral density function. Two forms of the cross-spectral density are derived using the physical optics approximation. The first is applicable to smooth-to-moderately rough surfaces and is a complicated expression of source and surface parameters. Physical insight is gleaned from its analytical form and presented in this work. The second form of the cross-spectral density function is applicable to very rough surfaces and is remarkably physical. Its form is discussed at length and closed-form expressions are derived for the angular spectral degree of coherence and spectral density radii. Furthermore, it is found that, under certain circumstances, the cross-spectral density function maintains a Gaussian Schell-model form. This is consistent with published results applicable only in the paraxial regime. Lastly, the closed-form cross-spectral density functions derived here are rigorously validated with scatterometer measurements and full-wave electromagnetic and physical optics simulations. Good agreement is noted between the analytical predictions and the measured and simulated results.

© 2013 OSA

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(240.5770) Optics at surfaces : Roughness
(260.2110) Physical optics : Electromagnetic optics
(290.5880) Scattering : Scattering, rough surfaces

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: January 28, 2013
Revised Manuscript: February 13, 2013
Manuscript Accepted: February 16, 2013
Published: March 12, 2013

Citation
Milo W. Hyde, Santasri Basu, Mark F. Spencer, Salvatore J. Cusumano, and Steven T. Fiorino, "Physical optics solution for the scattering of a partially-coherent wave from a statistically rough material surface," Opt. Express 21, 6807-6825 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-6-6807


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing: Active and Passive (Artech House, 1986, vol. 2).
  2. M.-J. Wang, Z.-S. Wu, and Y.-L. Li, “Investigation on the scattering characteristics of Gaussian beam from two dimensional dielectric rough surfaces based on the Kirchhoff approximation,” Prog. Electromagn. Res. B4, 223–235 (2008). [CrossRef]
  3. A. Ishimaru, C. Le, Y. Kuga, L. A. Sengers, and T. K. Chan, “Polarimetric scattering theory for high slope rough surfaces,” Prog. Electromagn. Res.14, 1–36 (1996).
  4. A. Ishimaru, Wave Propagation and Scattering in Random Media (IEEE, 1997).
  5. G. Guo, S. Li, and Q. Tan, “Statistical properties of laser speckles generated from far rough surfaces,” Int. J. Infrared Millimeter Waves22, 1177–1191 (2001). [CrossRef]
  6. V. I. Mandrosov, Coherent Fields and Images in Remote Sensing (SPIE, 2004). [CrossRef]
  7. M. E. Knotts, T. R. Michel, and K. A. O’Donnell, “Angular correlation functions of polarized intensities scattered from a one-dimensionally rough surface,” J. Opt. Soc. Am. A9, 1822–1831 (1992). [CrossRef]
  8. S. O. Rice, “Reflection of electromagnetic wave by slightly rough surfaces,” Commun. Pure Appl. Math.4, 351–378 (1951). [CrossRef]
  9. A. K. Fung and K. S. Chen, Microwave Scattering and Emission Models for Users (Artech House, 2010).
  10. R. Axline and A. Fung, “Numerical computation of scattering from a perfectly conducting random surface,” IEEE Trans. Antennas Propag.26, 482–488 (1978). [CrossRef]
  11. R. E. Collin, “Full wave theories for rough surface scattering: an updated assessment,” Radio Sci.29, 1237–1254 (1994). [CrossRef]
  12. R. Collin, “Scattering of an incident Gaussian beam by a perfectly conducting rough surface,” IEEE Trans. Antennas Propag.42, 70–74 (1994). [CrossRef]
  13. E. I. Thorsos, “The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum,” J. Acoust. Soc. Am.83, 78–92 (1988). [CrossRef]
  14. E. Bahar, “Full-wave solutions for the depolarization of the scattered radiation fields by rough surfaces of arbitrary slope,” IEEE Trans. Antennas Propag.29, 443–454 (1981). [CrossRef]
  15. T. M. Elfouhaily and C.-A. Guérin, “A critical survey of approximate scattering wave theories from random rough surfaces,” Waves Random Media14, R1–R40 (2004). [CrossRef]
  16. K. F. Warnick and W. C. Chew, “Numerical simulation methods for rough surface scattering,” Waves Random Media11, R1–R30 (2001). [CrossRef]
  17. A. A. Maradudin, ed., Light Scattering and Nanoscale Surface Roughness (Springer, 2007). [CrossRef]
  18. J. A. Ogilvy, Theory of Wave Scattering from Random Rough Surfaces (IOP Publishing, 1991).
  19. M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics, 2 ed. (World Scientific, 2006). [CrossRef]
  20. K. E. Torrance and E. M. Sparrow, “Theory for off-specular reflection from roughened surfaces,” J. Opt. Soc. Am.57, 1105–1112 (1967). [CrossRef]
  21. R. G. Priest and S. R. Meier, “Polarimetric microfacet scattering theory with applications to absorptive and reflective surfaces,” Opt. Eng.41, 988–993 (2002). [CrossRef]
  22. Y. Sun, “Statistical ray method for deriving reflection models of rough surfaces,” J. Opt. Soc. Am. A24, 724–744 (2007). [CrossRef]
  23. P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces (Pergamon, 1963).
  24. X. D. He, K. E. Torrance, F. X. Sillion, and D. P. Greenberg, “A comprehensive physical model for light reflection,” SIGGRAPH Computer Graphics25, 175–186 (1991). [CrossRef]
  25. J. Dainty, “Some statistical properties of random speckle patterns in coherent and partially coherent illumination,” Opt. Acta17, 761–772 (1970). [CrossRef]
  26. J. Goodman, “Statistical properties of laser speckle patterns,” in “Laser Speckle and Related Phenomena,” vol. 9 of Topics in Applied Physics, J. C. Dainty, ed. (Springer-Verlag, 1975, pp. 9–75). [CrossRef]
  27. G. Parry, “Speckle patterns in partially coherent light,” in “Laser Speckle and Related Phenomena,” vol. 9 of Topics in Applied Physics, J. C. Dainty, ed. (Springer-Verlag, 1975, pp. 77–121). [CrossRef]
  28. H. Fujii and T. Asakura, “A contrast variation of image speckle intensity under illumination of partially coherent light,” Opt. Commun.12, 32–38 (1974). [CrossRef]
  29. H. Fujii and T. Asakura, “Statistical properties of image speckle patterns in partially coherent light,” Nouv. Rev. Opt.6, 5–14 (1975). [CrossRef]
  30. H. Pedersen, “The roughness dependence of partially developed, monochromatic speckle patterns,” Opt. Commun.12, 156–159 (1974). [CrossRef]
  31. T. Yoshimura, K. Kato, and K. Nakagawa, “Surface-roughness dependence of the intensity correlation function under speckle-pattern illumination,” J. Opt. Soc. Am. A7, 2254–2259 (1990). [CrossRef]
  32. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Ben Roberts & Company, 2007).
  33. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  34. E. Wolf, “Unified theory of coherence and polarization of random electromagnetic beams,” Phys. Lett. A312, 263–267 (2003). [CrossRef]
  35. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University, 2007).
  36. G. Gbur and T. Visser, “The structure of partially coherent fields,” Progress in Optics55, 285–341 (2010). [CrossRef]
  37. O. Korotkova, M. Salem, and E. Wolf, “The far-zone behavior of the degree of polarization of electromagnetic beams propagating through atmospheric turbulence,” Opt. Commun.233, 225–230 (2004). [CrossRef]
  38. O. Korotkova, T. Visser, and E. Wolf, “Polarization properties of stochastic electromagnetic beams,” Opt. Commun.281, 515–520 (2008). [CrossRef]
  39. T. Leskova, A. Maradudin, and J. Munoz-Lopez, “The design of one-dimensional randomly rough surfaces that act as Collett-Wolf sources,” Opt. Commun.242, 123–133 (2004). [CrossRef]
  40. J. Li, Y. Chen, S. Xu, Y. Wang, M. Zhou, Q. Zhao, Y. Xin, and F. Chen, “Condition for invariant spectral degree of coherence of an electromagnetic plane wave on scattering,” Opt. Commun.284, 724–728 (2011). [CrossRef]
  41. T. Wang and D. Zhao, “Stokes parameters of an electromagnetic light wave on scattering,” Opt. Commun.285, 893–895 (2012). [CrossRef]
  42. T. Shirai and T. Asakura, “Multiple light scattering from spatially random media under the second-order Born approximation,” Opt. Commun.123, 234–249 (1996). [CrossRef]
  43. G. Gbur and E. Wolf, “Determination of density correlation functions from scattering of polychromatic light,” Opt. Commun.168, 39–45 (1999). [CrossRef]
  44. F. Gori, C. Palma, and M. Santarsiero, “A scattering experiment with partially coherent light,” Opt. Commun.74, 353–356 (1990). [CrossRef]
  45. E. Wolf, J. T. Foley, and F. Gori, “Frequency shifts of spectral lines produced by scattering from spatially random media,” J. Opt. Soc. Am. A6, 1142–1149 (1989). [CrossRef]
  46. B. G. Hoover and V. L. Gamiz, “Coherence solution for bidirectional reflectance distributions of surfaces with wavelength-scale statistics,” J. Opt. Soc. Am. A23, 314–328 (2006). [CrossRef]
  47. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, 2 ed. (SPIE, 2005). [CrossRef]
  48. O. Korotkova, Partially Coherent Beam Propagation in Turbulent Atmosphere with Applications (VDM Verlag Dr. Müller, 2009).
  49. R. S. Hansen, H. T. Yura, and S. G. Hanson, “First-order speckle statistics: an analytic analysis using ABCD matrices,” J. Opt. Soc. Am. A14, 3093–3098 (1997). [CrossRef]
  50. H. Yura and S. Hanson, “Variance of intensity for Gaussian statistics and partially developed speckle in complex ABCD optical systems,” Opt. Commun.228, 263–270 (2003). [CrossRef]
  51. S. Sahin, Z. Tong, and O. Korotkova, “Sensing of semi-rough targets embedded in atmospheric turbulence by means of stochastic electromagnetic beams,” Opt. Commun.283, 4512–4518 (2010). [CrossRef]
  52. J. Huttunen, A. T. Friberg, and J. Turunen, “Scattering of partially coherent electromagnetic fields by microstructured media,” Phys. Rev. E52, 3081–3092 (1995). [CrossRef]
  53. M. W. Hyde, S. Basu, S. J. Cusumano, and M. F. Spencer, “Scalar wave solution for the scattering of a partially coherent beam from a statistically rough metallic surface,” Proc. SPIE8550 (2012). [CrossRef]
  54. T. Hansen and A. Yaghjian, Plane-Wave Theory of Time-Domain Fields: Near-Field Scanning Applications (IEEE, 1999). [CrossRef]
  55. S. Ramo, J. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics, 3 ed. (John Wiley & Sons, 1994).
  56. C. A. Mack, “Analytic form for the power spectral density in one, two, and three dimensions,” J. Micro/Nanolithogr. MEMS MOEMS10, 040501 (2011).
  57. S. Basu, S. J. Cusumano, M. W. Hyde, M. A. Marciniak, and S. T. Fiorino, “Validity of using Gaussian Schell model for extended beacon studies,” Proc. SPIE8380 (2012).
  58. Under quasi-monochromatic conditions (Δω ≪ ω̄), S (ρ, ω) ≈ Γ(ρ, ρ, 0)δ(ω − ω̄) and μ (ρ1, ρ2, ω) ≈ γ (ρ1, ρ2, τ) exp (jω̄τ). Here, Γ is the mutual coherence function and γ is the complex degree of coherence [59].
  59. A. T. Friberg and E. Wolf, “Relationships between the complex degrees of coherence in the space-time and in the space-frequency domains,” Opt. Lett.20, 623–625 (1995). [CrossRef] [PubMed]
  60. B. Balling, “A comparative study of the bidirectional reflectance distribution function of several surfaces as a mid-wave infrared diffuse reflectance standard,” Master’s thesis, Graduate School of Engineering and Management, Air Force Institute of Technology (AETC), Wright-Patterson AFB OH (2009). http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA495933 .
  61. LabSphere Inc., “A guide to reflectance coatings and materials” (LabSphere, Inc., 2012). http://www.labsphere.com/uploads/technical-guides/a-guide-to-reflectance-materials-and-coatings.pdf .
  62. KLA-Tencor Corporation, “Alpha-Step IQ Surface Profiler” (KLA-Tencor Corporation, 2012). http://www.kla-tencor.com/surface-profiling/alpha-step-iq.html .
  63. R. Harrington, Field Computation by Moment Methods (IEEE, 1993). [CrossRef]
  64. A. F. Peterson, S. L. Ray, and R. Mittra, Computational Methods for Electromagnetics (IEEE, 1998).
  65. RefractiveIndex.INFO, “RefractiveIndex.INFO Refractive index database” (RefractiveIndex.INFO, 2012). http://refractiveindex.info .
  66. H. T. Yura and S. G. Hanson, “Digital simulation of an arbitrary stationary stochastic process by spectral representation,” J. Opt. Soc. Am. A28, 675–685 (2011). [CrossRef]
  67. X. Xiao and D. Voelz, “Wave optics simulation approach for partial spatially coherent beams,” Opt. Express14, 6986–6992 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited