OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 6845–6850

Split ring aperture for optical magnetic field enhancement by radially polarized beam

Y. Yang, H. T. Dai, and X. W. Sun  »View Author Affiliations


Optics Express, Vol. 21, Issue 6, pp. 6845-6850 (2013)
http://dx.doi.org/10.1364/OE.21.006845


View Full Text Article

Enhanced HTML    Acrobat PDF (2079 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Inspired by Babinet’s principle, we proposed a new plasmonic structure for enhancing the optical magnetic field, i.e. split ring aperture, whose complement is the well-known split ring. The split ring aperture exhibits a much better performance under radially polarized excitation than linearly polarized excitation. We attribute the ultra-high intensity enhancement in magnetic field to the symmetric matching between the aperture geometry and the direction of the electric field vector in each direction of radially excitation. The impact of the design parameters on the intensity enhancement and resonant wavelength is also investigated in details.

© 2013 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

History
Original Manuscript: October 31, 2012
Revised Manuscript: December 29, 2012
Manuscript Accepted: March 4, 2013
Published: March 12, 2013

Citation
Y. Yang, H. T. Dai, and X. W. Sun, "Split ring aperture for optical magnetic field enhancement by radially polarized beam," Opt. Express 21, 6845-6850 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-6-6845


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon.1(3), 438–483 (2009). [CrossRef]
  2. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011). [CrossRef]
  3. L. Cao, J. S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett.10(4), 1229–1233 (2010). [CrossRef] [PubMed]
  4. L. Novotny and S. J. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Annu. Rev. Phys. Chem.57(1), 303–331 (2006). [CrossRef] [PubMed]
  5. A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett.6(3), 355–360 (2006). [CrossRef] [PubMed]
  6. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008). [CrossRef] [PubMed]
  7. Z. Gao, L. Xu, and Z. Wang, “Broadband plasmonic nanoantenna for magnetic field enhancement,” J. Electromagn. Waves Appl.25(17-18), 2341–2352 (2011). [CrossRef]
  8. E. Vourc’h, P.-Y. Joubert, and L. Cima, “Analytical and numerical analyses of a current sensor using nonlinear effects in a flexible magnetic transducer,” Prog. Electromagnetics Res.99, 323–338 (2009). [CrossRef]
  9. M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science313(5786), 502–504 (2006). [CrossRef] [PubMed]
  10. T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, and U. C. Fischer, “Diabolo nanoantenna for enhancing and confining the magnetic optical field,” Nano Lett.11(3), 1009–1013 (2011). [CrossRef] [PubMed]
  11. N. Zhou, E. C. Kinzel, and X. Xu, “Complementary bowtie aperture for localizing and enhancing optical magnetic field,” Opt. Lett.36(15), 2764–2766 (2011). [CrossRef] [PubMed]
  12. F. Falcone, T. Lopetegi, M. A. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett.93(19), 197401 (2004). [CrossRef] [PubMed]
  13. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon.1(1), 1–57 (2009). [CrossRef]
  14. Lumerical FDTD Solution, FDTD Solutions 7.5, http://www.lumerical.com/ .
  15. W. M. Haynes and D. R. Lide, Handbook of chemistry and physics (CRC Press, 2003).
  16. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett.4(5), 957–961 (2004). [CrossRef]
  17. L. L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B107(30), 7343–7350 (2003). [CrossRef]
  18. J. Scheuer, “Ultra-high enhancement of the field concentration in Split Ring Resonators by azimuthally polarized excitation,” Opt. Express19(25), 25454–25464 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited