OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 6880–6888

Observation of electromagnetically induced transparency in evanescent fields

R. Thomas, C. Kupchak, G. S. Agarwal, and A. I. Lvovsky  »View Author Affiliations

Optics Express, Vol. 21, Issue 6, pp. 6880-6888 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (840 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We observe and investigate, both experimentally and theoretically, electromagnetically-induced transparency experienced by evanescent fields arising due to total internal reflection from an interface of glass and hot rubidium vapor. This phenomenon manifests itself as a non-Lorentzian peak in the reflectivity spectrum, which features a sharp cusp with a sub-natural width of about 1 MHz. The width of the peak is independent of the thickness of the interaction region, which indicates that the main source of decoherence is likely due to collisions with the cell walls rather than diffusion of atoms. With the inclusion of a coherence-preserving wall coating, this system could be used as an ultra-compact frequency reference.

© 2013 OSA

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(300.6210) Spectroscopy : Spectroscopy, atomic

ToC Category:
Atomic and Molecular Physics

Original Manuscript: December 14, 2012
Revised Manuscript: February 28, 2013
Manuscript Accepted: February 28, 2013
Published: March 12, 2013

R. Thomas, C. Kupchak, G. S. Agarwal, and A. I. Lvovsky, "Observation of electromagnetically induced transparency in evanescent fields," Opt. Express 21, 6880-6888 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66, 2593–2596 (1991). [CrossRef] [PubMed]
  2. M. Baur, S. Filipp, R. Bianchetti, J. M. Fink, M. Göppl, L. Steffen, P. J. Leek, A. Blais, and A. Wallraff, “Measurement of autler-townes and mollow transitions in a strongly driven superconducting qubit,” Phys. Rev. Lett.102, 243602 (2009). [CrossRef] [PubMed]
  3. M. A. Sillanpää, J. Li, K. Cicak, F. Altomare, J. I. Park, R. W. Simmonds, G. S. Paraoanu, and P. J. Hakonen, “Autler-Townes Effect in a Superconducting Three-Level System,” Phys. Rev. Lett.103, 193601 (2009). [CrossRef]
  4. G. S. Agarwal and S. Huang, “Electromagnetically induced transparency in mechanical effects of light,” Phys. Rev. A81, 041803 (2010). [CrossRef]
  5. J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime.” Nature471, 204–8 (2011). [CrossRef] [PubMed]
  6. J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state.” Nature478, 89–92 (2011). [CrossRef] [PubMed]
  7. A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nature Phot.3, 706–714 (2009). [CrossRef]
  8. M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett.102, 203902 (2009). [CrossRef] [PubMed]
  9. T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature488, 57–60 (2012). [CrossRef] [PubMed]
  10. B. He, A. MacRae, Y. Han, A. I. Lvovsky, and C. Simon, “Transverse multimode effects on the performance of photon-photon gates,” Phys. Rev. A83, 022312 (2011). [CrossRef]
  11. F. Le Kien and K. Hakuta, “Slowing down of a guided light field along a nanofiber in a cold atomic gas,” Phys. Rev. A79, 013818 (2009). [CrossRef]
  12. S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett.100, 233602 (2008). [CrossRef] [PubMed]
  13. S. T. Dawkins, R. Mitsch, D. Reitz, E. Vetsch, and A. Rauschenbeutel, “Dispersive optical interface based on nanofiber-trapped atoms,” Phys. Rev. Lett.107, 243601 (2011). [CrossRef]
  14. E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett.104, 203603 (2010). [CrossRef] [PubMed]
  15. J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B81, 421–442 (2005). [CrossRef]
  16. M. Klein, I. Novikova, D. F. Phillips, and R. L. Walsworth, “Slow light in paraffin-coated Rb vapour cells,” J. Mod. Optic.53, 2583–2591 (2006). [CrossRef]
  17. E. E. Mikhailov, T. Horrom, N. Belcher, and I. Novikova, “Performance of a prototype atomic clock based on linlin coherent population trapping resonances in Rb atomic vapor,” J. Opt. Soc. Am. B27, 417–422 (2010). [CrossRef]
  18. A. Sargsyan, C. Leroy, Y. Pashayan-Leroy, R. Mirzoyan, A. Papoyan, and D. Sarkisyan, “High contrast D 1 line electromagnetically induced transparency in nanometric-thin rubidium vapor cell,” Appl. Phys. B105, 767–774 (2011). [CrossRef]
  19. Y. Pashayan-Leroy, C. Leroy, A. Sargsyan, A. Papoyan, and D. Sarkisyan, “Electromagnetically induced transparency: the thickness of the vapor column is of the order of a light wavelength,” J. Opt. Soc. Am. B24, 1829–1838 (2007). [CrossRef]
  20. L. Lenci, A. Lezama, and H. Failache, “Dark resonances in thin cells for miniaturized atomic-frequency references,” Opt. Lett.34, 425–427 (2009). [CrossRef] [PubMed]
  21. S. E. Harris, “Electromagnetically induced transparency in an ideal plasma,” Phys. Rev. Lett.77, 5357–5360 (1996). [CrossRef] [PubMed]
  22. J. Guo, J. Cooper, and A. Gallagher, “Selective reflection from a dense atomic vapor,” Phys. Rev. A53, 1130–1138 (1996). [CrossRef] [PubMed]
  23. P. Wang, A. Gallagher, and J. Cooper, “Selective reflection by Rb,” Phys. Rev. A56, 1598–1606 (1997). [CrossRef]
  24. A. M. Akul’shin, V. L. Velichanskii, A. I. Zherdev, A. S. Zibrov, V. I. Malakhova, V. V. Nikitin, V. A. Sautenkov, and G. G. Kharisov, “Selective reflection from a glass-gas interface at high angles of incidence of light,” Sov. J. Quantum Electron.19, 416–419 (1989). [CrossRef]
  25. B. Gross, N. Papageorgiou, V. Sautenkov, and A. Weis, “Velocity selective optical pumping and dark resonances in selective reection spectroscopy,” Phys. Rev. A55, 2973–2981 (1997). [CrossRef]
  26. A. Weis, V. A. Sautenkov, and T. W. Hänsch, “Observation of ground-state zeeman coherences in the selective reflection from cesium vapor,” Phys. Rev. A45, 7991–7996 (1992). [CrossRef] [PubMed]
  27. J. Appel, A. MacRae, and A. I. Lvovsky, “A versatile digital GHz phase lock for external cavity diode lasers,” Meas. Sci. Technol.20, 055302 (2009). [CrossRef]
  28. G. Nienhuis, F. Schuller, and M. Ducloy, “Nonlinear selective reflection from an atomic vapor at arbitrary incidence angle,” Phys. Rev. A38, 5197–5205 (1988). [CrossRef] [PubMed]
  29. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, 2002).
  30. E. Figueroa, F. Vewinger, J. Appel, and A. I. Lvovsky, “Decoherence of electromagnetically induced transparency in atomic vapor.” Opt. Lett.31, 2625–2627 (2006). [CrossRef] [PubMed]
  31. J. D. Jackson, Classical Electrodynamics, Third Edition (John Wiley & Sons, Inc., 1999).
  32. C.-T. Tai, Dyadic Green’s Functions in Electromagnetic Theory (Intext Educational Publishers, 1971).
  33. A. V. Taĭchenachev, A. M. Tumaikin, V. I. Yudin, M. Stähler, R. Wynands, J. Kitching, and L. Hollberg, “Nonlinear-resonance line shapes: Dependence on the transverse intensity distribution of a light beam,” Phys. Rev. A69, 024501 (2004). [CrossRef]
  34. E. Pfleghaar, J. Wurster, S. Kanorsky, and A. Weis, “Time of flight effects in nonlinear magneto-optical spectroscopy,” Opt. Commun.99, 303–308 (1993). [CrossRef]
  35. D. Steck, “Akali D line data,” http://steck.us/alkalidata/ .
  36. P. R. Berman, “Markovian relaxation processes for atoms in vapors and in solids: calculation of free-induction decay in the weak-external-field limit,” J. Opt. Soc. Am. B3, 572–586 (1986). [CrossRef]
  37. Y. Xiao, I. Novikova, D. F. Phillips, and R. L. Walsworth, “Diffusion-induced ramsey narrowing,” Phys. Rev. Lett.96, 043601 (2006). [CrossRef] [PubMed]
  38. H. W. Moos and R. H. Sands, “Study of spin-exchange collisions in vapors of Rb85, Rb87, and Cs133 by paramagnetic resonance,” Phys. Rev.135, A591–A602 (1964). [CrossRef]
  39. M. V. Balabas, K. Jensen, W. Wasilewski, H. Krauter, L. S. Madsen, J. H. Müller, T. Fernholz, and E. S. Polzik, “High quality anti-relaxation coating material for alkali atom vapor cells,” Opt. Express18, 5825–5830 (2010). [CrossRef] [PubMed]
  40. S. Knappe, V. Gerginov, P. D. D. Schwindt, V. Shah, H. G. Robinson, L. Hollberg, and J. Kitching, “Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability,” Opt. Lett.30, 2351–2353 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited