OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 6889–6894

Large current MOSFET on photonic silicon-on-insulator wafers and its monolithic integration with a thermooptic 2 × 2 MachZehnder switch

G.W. Cong, T. Matsukawa, T. Chiba, H. Tadokoro, M. Yanagihara, M. Ohno, H. Kawashima, H. Kuwatsuka, Y. Igarashi, M. Masahara, and H. Ishikawa  »View Author Affiliations

Optics Express, Vol. 21, Issue 6, pp. 6889-6894 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2607 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



n-channel body-tied partially depleted metal-oxide-semiconductor field-effect transistors (MOSFETs) were fabricated for large current applications on a silicon-on-insulator wafer with photonics-oriented specifications. The MOSFET can drive an electrical current as large as 20 mA. We monolithically integrated this MOSFET with a 2 × 2 Mach–Zehnder interferometer optical switch having thermo–optic phase shifters. The static and dynamic performances of the integrated device are experimentally evaluated.

© 2013 OSA

OCIS Codes
(250.3140) Optoelectronics : Integrated optoelectronic circuits
(250.5300) Optoelectronics : Photonic integrated circuits
(250.6715) Optoelectronics : Switching

ToC Category:

Original Manuscript: January 16, 2013
Revised Manuscript: March 3, 2013
Manuscript Accepted: March 4, 2013
Published: March 12, 2013

G.W. Cong, T. Matsukawa, T. Chiba, H. Tadokoro, M. Yanagihara, M. Ohno, H. Kawashima, H. Kuwatsuka, Y. Igarashi, M. Masahara, and H. Ishikawa, "Large current MOSFET on photonic silicon-on-insulator wafers and its monolithic integration with a thermo–optic 2 × 2 Mach–Zehnder switch," Opt. Express 21, 6889-6894 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, and J. Rosenberg, T. barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monagham, and Y. Vlasov, “A 90nm CMOS integrated nano-photonics technology for 25Gbps WDM optical communications application,” in IEEE International Electron Devices Meeting (IDEM) 2012, pp. 33.8.1−3.
  2. P. D. Dobbelaere, S. Abdalla, S. Gloeckner, M. Mack, G. Masini, A. Mekis, T. Pinguet, S. Sahni, D. Guckenberger, M. Harrison, and A. Narasimha, “Si photonics based high-speed optical transceivers,” European Conference and Exhibition on Optical Communication (ECOC) 2012, We.1.E.5.
  3. A. Narasimha, B. Analui, Y. Liang, T. J. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. G. M. P. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, D. Song, and T. Pinguet, “A fully integrated 4× 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits42(12), 2736–2744 (2007). [CrossRef]
  4. S. Nakamura, S. Takahashi, M. Sakauchi, T. Hino, M-B. Yu, and G-Q. Lo, “Wavelength selective switching with one chip silicon photonic circuit including 8x8 matrix switch,” OFC/NFOEC 2011, OTuM2.
  5. T. Shoji, K. Kintaka, S. Suda, H. Kawashima, T. Hasama, and H. Ishikawa, “Low-crosstalk 2x2 thermo-optic switch with silicon wire waveguides,” Opt. Express18, 12–14 (2011).
  6. P. Dong, S. Liao, H. Liang, R. Shafiiha, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Submilliwatt, ultrafast and broadband electro-optic silicon switches,” Opt. Express18(24), 25225–25231 (2010). [CrossRef] [PubMed]
  7. S. Sekiguchi, T. Kurahashi, L. Zhu, K. Kawaguchi, and K. Morito, “Compact and low power operation optical switch using silicon-germanium/silicon hetero-structure waveguide,” Opt. Express20(8), 8949–8958 (2012). [CrossRef] [PubMed]
  8. T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, “Nonblocking 16 x 16 thermooptic matrix switch on 6-in wafer using silica-based planar lightwave circuit technology,” J. Lightwave Technol.19, 371–379 (2001). [CrossRef]
  9. S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32x32 optical matrix switch,” European Conference and Exhibition on Optical Communication (ECOC) 2006, OThV4.
  10. S. S. Chen and J. B. Kuo, “An analytical CAD kink effect model of partially-depleted SOI NMOS devices operating in strong inversion,” Solid-State Electron.41(3), 447–458 (1997). [CrossRef]
  11. I. A. Blech, “Electromigration in thin aluminum films on titanium nitride,” J. Appl. Phys.47(4), 1203–1208 (1976). [CrossRef]
  12. http://en.wikipedia.org/wiki/Electrical_resistivity_and_conductivity
  13. R. Kasahara, M. Yanagisawa, T. Goh, A. Sugita, A. Himeno, M. Yasu, and S. Matsui, “New structure of silica-based planar lightwave circuits for low-power thermooptic switch and its application to 8×8 optical matrix switch,” J. Lightwave Technol.20(6), 993–1000 (2002). [CrossRef]
  14. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, S. Uchiyama, and S. Itabashi, “Low-loss Si wire waveguides and their application to thermooptic switches,” Jpn. J. Appl. Phys.45(8B), 6658–6662 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited