OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 6901–6909

Black silicon: substrate for laser 3D micro/nano-polymerization

Albertas Žukauskas, Mangirdas Malinauskas, Arūnas Kadys, Gediminas Gervinskas, Gediminas Seniutinas, Sasikaran Kandasamy, and Saulius Juodkazis  »View Author Affiliations

Optics Express, Vol. 21, Issue 6, pp. 6901-6909 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (5216 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate that black silicon (b-Si) made by dry plasma etching is a promising substrate for laser three-dimensional (3D) micro/nano-polymerization. High aspect ratio Si-needles, working as sacrificial support structures, have flexibility required to relax interface stresses between substrate and the polymerized micro-/nano- objects. Surface of b-Si can be made electrically conductive by metal deposition and, at the same time, can preserve low optical reflectivity beneficial for polymerization by direct laser writing. 3D laser polymerization usually performed at the irradiation conditions close to the dielectric breakdown is possible on non-reflective and not metallic surfaces. Here we show that low reflectivity and high metallic conductivity are not counter- exclusive properties for laser polymerization. Electrical conductivity of substrate and its permeability in liquids are promising for bio- and electroplating applications.

© 2013 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(220.4000) Optical design and fabrication : Microstructure fabrication
(160.1245) Materials : Artificially engineered materials

ToC Category:
Laser Microfabrication

Original Manuscript: January 15, 2013
Revised Manuscript: March 1, 2013
Manuscript Accepted: March 2, 2013
Published: March 12, 2013

Albertas Žukauskas, Mangirdas Malinauskas, Arūnas Kadys, Gediminas Gervinskas, Gediminas Seniutinas, Sasikaran Kandasamy, and Saulius Juodkazis, "Black silicon: substrate for laser 3D micro/nano-polymerization," Opt. Express 21, 6901-6909 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Hanada, K. Sugioka, H. Kawano, I. S. Ishikawa, A. Miyawaki, and K. Midorikawa, “Nano-aquarium for dynamic observation of living cells fabricated by femtosecond laser direct writing of photostructurable glass,” Biomed. Microdev.10, 403–410 (2008). [CrossRef]
  2. Y. Hanada, K. Sugioka, I. Shihira-Ishikawa, H. Kawano, A. Miyawaki, and K. Midorikawa, “3D microfluidic chips with integrated functional microelements fabricated by a femtosecond laser for studying the gliding mechanism of cyanobacteria,” Lab Chip.11, 2109–2115 (2011). [CrossRef] [PubMed]
  3. D. Day, K. Pham, M. J. Ludford-Menting, J. Oliaro, D. Izon, S. Russell, and M. Gu, “A method for prolonged imaging of motile lymphocytes,” Immunol. Cell. Biol.87, 154–158 (2009). [CrossRef]
  4. M. Malinauskas, H. Gilbergs, A. Žukauskas, K. Belazaras, V. Purlys, M. Rutkauskas, G. Bičkauskaitė, D. Paipulas, R. Gadonas, A. Piskarskas, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12, 124010 (2010). [CrossRef]
  5. K. Pham, R. Shimoni, M. J. Ludford-Menting, C. J. Nowell, P. Lobachevsky, Z. Bomzon, M. Gu, T. P. Speed, C. J. McGlade, and S. M. Russell, “Divergent lymphocyte signalling revealed by a powerful new tool for analysis of time-lapse microscopy,” Immunol. Cell Biol.(2012 (in press)). [CrossRef]
  6. C. Reinhardt, S. Passinger, B. Chichkov, C. Marquart, I. Radko, and S. Bozhevolnyi, “Laser-fabricated dielectric optical components for surface plasmon polaritons,” Opt. Lett.31, 1307–1309 (2006). [CrossRef] [PubMed]
  7. S. Rekstyte, A. Zukauskas, V. Purlys, Y. Gordienko, and M. Malinauskas, “Direct laser writing of 3D micro/nanostructures on opaque surfaces,” Proc. SPIE8431, 843123 (2012). [CrossRef]
  8. T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “A novel femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett.79, 725–727 (2001). [CrossRef]
  9. H. Jansen, M. de Boer, R. Legtenberg, and M. Elwenspoek, “The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control,” J. Micromech. Microeng.5, 115–120 (1995). [CrossRef]
  10. J. Pezoldt, T. Kups, M. Stubenrauch, and M. Fischer, “Black luminescent silicon,” Physica Status Solidi (c)8, 1021–1026 (2011). [CrossRef]
  11. A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2, 2257–2262 (2008). [CrossRef]
  12. M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express18, 10209–10221 (2010). [CrossRef] [PubMed]
  13. M. Malinauskas, V. Purlys, M. Rutkauskas, A. Gaidukevičiutė, and R. Gadonas, “Femtosecond visible light induced two-photon photopolymerization for 3D micro/nanostructuring in photoresists and photopolymers,” Lith. J. Phys.50, 201–208 (2010). [CrossRef]
  14. K. Ho, C. Chan, C. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Sol. Stat. Comm.89, 413–416 (1994). [CrossRef]
  15. V. Mizeikis, S. Juodkazis, R. Tarozaitė, J. Juodkazytė, K. Juodkazis, and H. Misawa, “Fabrication and properties of metalo-dielectric photonic crystal structures for infrared spectral region,” Opt. Express15, 8454–8464 (2007). [CrossRef] [PubMed]
  16. I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high resolution direct femtosecond laser writing,” ACS Nano27, 2302–2311 (2012). [CrossRef]
  17. K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nano-particle-enhanced photo-polymerization,” J. Phys. Chem. C113, 11720–11724 (2009). [CrossRef]
  18. A. Ranella, M. Barberoglou, S. Bakogianni, C. Fotakis, and E. Stratakis, “Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures,” Acta Biomaterialia6, 2711–2720 (2010). [CrossRef] [PubMed]
  19. S. Juodkazis, V. Mizeikis, K. K. Seet, H. Misawa, and U. G. K. Wegst, “Mechanical properties and tuning of three-dimensional polymeric photonic crystals,” Appl. Phys. Lett.91, 241904 (2007). [CrossRef]
  20. T. Kondo, S. Juodkazis, and H. Misawa, “Reduction of capillary force for high-aspect ratio nanofabrication,” Appl. Phys. A81, 1583–1586 (2005). [CrossRef]
  21. T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73, 1673–1675 (1998). [CrossRef]
  22. P. G. Maloney, P. Smith, V. King, C. Billman, M. Winkler, and E. Mazur, “Emissivity of microstructured silicon,” Appl. Opt.49, 1065 – 1068 (2010). [CrossRef] [PubMed]
  23. H. Jin and G. L. Liu, “Fabrication and optical characterization of light trapping silicon nanopore and nanoscrew devices,” Nanotechnology23, 125202 (2012). [CrossRef] [PubMed]
  24. L. Taylor, T. Kirchner, N. Lavrik, and M. Sepaniak, “Surface enhanced raman spectroscopy for microfluidic pillar arrayed separation chips,” Analyst137, 1005–1012 (2012). [CrossRef]
  25. K. Juodkazis, J. Juodkazytė, P. Kalinauskas, E. Jelmakas, and S. Juodkazis, “Photoelectrolysis of water: Solar hydrogen - achievements and perspectives,” Opt. Express18, A147–A160 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited