OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 6943–6954

Design of broadband and high-output power uni-traveling-carrier photodiodes

Rong Zhang, Bouchaib Hraimel, Xue Li, Peng Zhang, and Xiupu Zhang  »View Author Affiliations

Optics Express, Vol. 21, Issue 6, pp. 6943-6954 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (4418 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, physically-based simulations are carried out to investigate and design broadband and high-output power uni-traveling carrier (UTC) photodiodes. The physical model is first verified by comparison to experimentally measured results. The graded-bandgap structure, which can induce potential gradient, is considered to be used in the absorption layers. It is shown that the electric field in the absorption layer is increased by the gradient, thus the performance of bandwidth and saturation current is improved by 36.6% and 40% respectively for our considered photodiode. Moreover, a modified graded-bandgap structure is proposed to further increase the electric field, and an additional 9.5% improvement in bandwidth is achieved. The final proposed UTC-PD structures will result in 399-GHz bandwidth and 49-mA DC saturation current.

© 2013 OSA

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(230.5170) Optical devices : Photodiodes
(250.0040) Optoelectronics : Detectors

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 28, 2013
Revised Manuscript: March 4, 2013
Manuscript Accepted: March 5, 2013
Published: March 13, 2013

Rong Zhang, Bouchaib Hraimel, Xue Li, Peng Zhang, and Xiupu Zhang, "Design of broadband and high-output power uni-traveling-carrier photodiodes," Opt. Express 21, 6943-6954 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Cox, E. Ackerman, G. Betts, and J. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech.54(2), 906–920 (2006). [CrossRef]
  2. J.-W. Shi, C.-B. Huang, and C.-L. Pan, “Millimeter-wave photonic wireless links for very high data rate communication,” NPG Asia Mater.3(4), 41–48 (2011). [CrossRef]
  3. M. Achouche, G. Glastre, C. Caillaud, M. Lahrichi, M. Chtioui, and D. Carpentier, “InGaAs communication photodiodes: from low- to high-power-level designs,” IEEE Photonics J.2(3), 460–468 (2010). [CrossRef]
  4. H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP–InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron.10(4), 709–727 (2004). [CrossRef]
  5. T. Ishibashi, N. Shimizu, S. Kodama, H. Ito, T. Nagatsuma, and T. Furuta, “Uni-traveling-carrier photodiodes,” in Ultrafast Electronics Optoelectronics OSA Spring Topical Meeting, Technical Digest (Optical Society of America, 1997), pp. 166–168.
  6. T. Ishibashi, S. Kodoma, N. Shimizu, and T. Furuta, “High-speed response of uni-traveling-carrier photodiodes,” Jpn. J. Appl. Phys.36(Part 1, No. 10), 6263–6268 (1997). [CrossRef]
  7. M. Chtioui, A. Enard, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, and M. Achouche, “High-performance uni-traveling-carrier photodiodes with a new collector design,” IEEE Photon. Technol. Lett.20(13), 1163–1165 (2008). [CrossRef]
  8. D.-H. Jun, J.-H. Jang, I. Adesida, and J.-I. Song, “Improved efficiency bandwidth product of modified uni-traveling carrier photodiode structures using an undoped photo-absorption layer,” Jpn. J. Appl. Phys.45(4B), 3475–3478 (2006). [CrossRef]
  9. X. Wang, N. Duan, H. Chen, and J. C. Campbell, “InGaAs-InP photodiodes with high responsivity and high saturation power,” IEEE Photon. Technol. Lett.19(16), 1272–1274 (2007). [CrossRef]
  10. M. Chtioui, F. Lelarge, A. Enard, F. Pommereau, D. Carpentier, A. Marceaux, F. van Dijk, and M. Achouche, “High responsivity and high power UTC and MUTC GaInAs-InP photodiodes,” IEEE Photon. Technol. Lett.24(4), 318–320 (2012). [CrossRef]
  11. Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron.46(5), 626–632 (2010). [CrossRef]
  12. J.-W. Shi, F.-M. Kuo, and J. E. Bowers, “Design and analysis of ultra-high-speed near-ballistic uni-traveling-carrier photodiodes under a 50-Ω load for high-power performance,” IEEE Photon. Technol. Lett.24(7), 533–535 (2012). [CrossRef]
  13. J.-W. Shi, Y.-S. Wu, C.-Y. Wu, P.-H. Chiu, and C.-C. Hong, “High-speed, high-responsivity, and high-power performance of near-ballistic uni-traveling-carrier photodiode at 1.55-μm wavelength,” IEEE Photon. Technol. Lett.17(9), 1929–1931 (2005). [CrossRef]
  14. M. Chtioui, A. Enard, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, and M. Achouche, “High-power and high-linearity uni-traveling-carrier photodiodes for analog photonic links,” IEEE Photon. Technol. Lett.20(3), 202–204 (2008). [CrossRef]
  15. H. Fukano, Y. Muramoto, K. Takahata, and Y. Matsuoka, “High efficiency edge-illuminated unitravelling-carrier-structure refracting-facet photodiode,” Electron. Lett.35(19), 1664–1665 (1999). [CrossRef]
  16. S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, and A. Anselm, “Very high-responsivity evanescently coupled photodiodes integrating a short planar multimode waveguide for high-speed applications,” IEEE Photon. Technol. Lett.15(12), 1761–1763 (2003). [CrossRef]
  17. J. Klamkin, S. M. Madison, D. C. Oakley, A. Napoleone, F. J. O’Donnell, M. Sheehan, L. J. Missaggia, J. M. Caissie, J. J. Plant, and P. W. Juodawlkis, “Uni-traveling-carrier variable confinement waveguide photodiodes,” Opt. Express19(11), 10199–10205 (2011). [CrossRef] [PubMed]
  18. M. Hosseinifar, V. Ahmadi, and G. Abaeiani, “Microring-based unitraveling carrier photodiodes for high bandwidth-efficiency product photodetection in optical communication,” J. Lightwave Technol.29(9), 1285–1292 (2011). [CrossRef]
  19. J.-W. Shi, F.-M. Kuo, C.-J. Wu, C. L. Chang, C.-Y. Liu, C. Y. Chen, and J.-I. Chyi, “Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure,” IEEE J. Quantum Electron.46(1), 80–86 (2010). [CrossRef]
  20. Y.-S. Wu, J.-W. Shi, and P.-H. Chiu, “Analytical modeling of a high-performance near-ballistic uni-traveling-carrier photodiode at a 1.55-μm wavelength,” IEEE Photon. Technol. Lett.18(8), 938–940 (2006). [CrossRef]
  21. R. Stratton, “Diffusion of hot and cold electrons in semiconductor barriers,” Phys. Rev.126(6), 2002–2014 (1962). [CrossRef]
  22. R. Stratton, “Semiconductor current-flow equations (diffusion and degeneracy),” IEEE Trans. Electron. Dev.19(12), 1288–1292 (1972). [CrossRef]
  23. New semiconductor materials, characteristics and properties, http://www.ioffe.rssi.ru/SVA/NSM/ .
  24. S. Adachi, Physical Properties of III–V Semiconductor Compounds InP, InAs, GaAs, GaP, InGaAs, and InGaAsP, (John Wiley and Sons, 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited