OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 6967–6972

Submicron optical waveguides and microring resonators fabricated by selective oxidation of tantalum

Payam Rabiei, Jichi Ma, Saeed Khan, Jeff Chiles, and Sasan Fathpour  »View Author Affiliations

Optics Express, Vol. 21, Issue 6, pp. 6967-6972 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (964 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Submicron tantalum pentoxide ridge and channel optical waveguides and microring resonators are demonstrated on silicon substrates by selective oxidation of the refractory metal, tantalum. The novel method eliminates the surface roughness problem normally introduced during dry etching of waveguide sidewalls and also simplifies fabrication of directional couplers. It is shown that the measured propagation loss is independent of the waveguide structure and thereby limited by the material loss of tantalum pentoxide in waveguides core regions. The achieved microring resonators have cross-sectional dimensions of ~600 nm × ~500 nm, diameters as small as 80 µm with a quality, Q, factor of 4.5 × 104, and a finesse of 120.

© 2013 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(230.4000) Optical devices : Microstructure fabrication
(230.5750) Optical devices : Resonators
(230.7370) Optical devices : Waveguides

ToC Category:
Integrated Optics

Original Manuscript: January 16, 2013
Revised Manuscript: February 25, 2013
Manuscript Accepted: February 28, 2013
Published: March 13, 2013

Payam Rabiei, Jichi Ma, Saeed Khan, Jeff Chiles, and Sasan Fathpour, "Submicron optical waveguides and microring resonators fabricated by selective oxidation of tantalum," Opt. Express 21, 6967-6972 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Tech. J. •••, 2071–2102 (1969).
  2. E. A. J. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Tech. J. •••, 2103–2132 (1969).
  3. D. Marcuse, “Mode conversion caused by surface imperfections of a dielectric slab waveguide,” Bell Syst. Tech. J. •••, 3187–3215 (1969).
  4. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997). [CrossRef]
  5. D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho, and R. C. Tiberio, “Waveguide-coupled AlGaAs / GaAs microcavity ring and disk resonators with high f inesse and 21.6-nm f ree spectral range,” Opt. Lett. 22(16), 1244–1246 (1997). [CrossRef] [PubMed]
  6. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol. 20(11), 1968–1975 (2002). [CrossRef]
  7. B. Jalali and S. Fathpour, “Silicon Photonics,” J. Lightwave Technol. 24(12), 1400–1415 (2006). [CrossRef]
  8. P. Rabiei, “Calculation of losses in micro-ring resonators with arbitrary refractive index or shape profile and its applications,” J. Lightwave Technol. 23(3), 1295–1301 (2005). [CrossRef]
  9. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003). [CrossRef] [PubMed]
  10. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO(2) waveguides by roughness reduction,” Opt. Lett. 26(23), 1888–1890 (2001). [CrossRef] [PubMed]
  11. S. Fathpour, K. M. Tsia, and B. Jalali, “Two-photon photovoltaic effect in silicon,” IEEE J. Quantum Electron. 43(12), 1211–1217 (2007). [CrossRef]
  12. D. Duchesne, M. Ferrera, L. Razzari, R. Morandotti, M. Peccianti, B. E. Little, S. T. Chu, and D. J. Moss, “High performance, low-loss nonlinear integrated glass waveguides,” PIERS Online 6(3), 283–286 (2010). [CrossRef]
  13. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
  14. R. Y. Chen, M. D. Charlton, and P. G. Lagoudakis, “Chi 3 dispersion in planar tantalum pentoxide waveguides in the telecommunications window,” Opt. Lett. 34(7), 1135–1137 (2009). [CrossRef] [PubMed]
  15. C.-Y. Tai, J. S. Wilkinson, N. M. B. Perney, M. Netti, F. Cattaneo, C. E. Finlayson, and J. J. Baumberg, “Determination of nonlinear refractive index in a Ta2O5 rib waveguide using self-phase modulation,” Opt. Express 12(21), 5110–5116 (2004). [CrossRef] [PubMed]
  16. Y. C. Cheng and W. D. Festwood, “Losses in tantalum pentoxide waveguides,” J. Electron. Mater. 3(1), 37–50 (1974). [CrossRef]
  17. H. Takahashi, S. Suzuki, and I. Nishi, “Wavelength multiplexer based on SiO2-Ta2O5 arrayed-waveguide grating,” J. Lightwave Technol. 12(6), 989–995 (1994). [CrossRef]
  18. B. Unal, C. Y. Tai, D. P. Shepherd, J. S. Wilkinson, N. M. B. Perney, M. C. Netti, and G. J. Parker, “Nd:Ta2O5 rib waveguide lasers,” Appl. Phys. Lett. 86(2), 021110 (2005). [CrossRef]
  19. C. A. Steidel and D. Gerstenberg, “Thermal oxidation of sputtered Tantalum thin films between 100° and 525°C,” J. Appl. Phys. 40(9), 3828–3835 (1969). [CrossRef]
  20. H. F. Winters and E. Kay, “Gas incorporation into sputtered films,” J. Appl. Phys. 38(10), 3928–3934 (1967). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited