OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 6997–7007

Detailed analysis of the longitudinal acousto-optical resonances in a fiber Bragg modulator

Ricardo E. Silva, Marcos A. R. Franco, Paulo T. Neves, Jr., Hartmut Bartelt, and Alexandre A. P. Pohl  »View Author Affiliations


Optics Express, Vol. 21, Issue 6, pp. 6997-7007 (2013)
http://dx.doi.org/10.1364/OE.21.006997


View Full Text Article

Enhanced HTML    Acrobat PDF (3062 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The interaction frequencies between longitudinal acoustic waves and fiber Bragg grating are numerically and experimentally assessed. Since the grating modulation depends on the acoustic drive, the combined analysis provides a more efficient operation. In this paper, 3-D finite element and transfer matrix methods allow investigating the electrical, mechanical and optical resonances of an acousto-optical device. The frequency response allows locating the resonances and characterizing their mechanical displacements. Measurements of the grating response under resonant excitation are compared to simulated results. A smaller than <1.5% average difference between simulated-measured resonances indicates that the method is useful for the design and characterization of optical modulators.

© 2013 OSA

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.4080) Fiber optics and optical communications : Modulation
(230.1040) Optical devices : Acousto-optical devices
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: October 8, 2012
Revised Manuscript: December 21, 2012
Manuscript Accepted: December 30, 2012
Published: March 13, 2013

Citation
Ricardo E. Silva, Marcos A. R. Franco, Paulo T. Neves, Hartmut Bartelt, and Alexandre A. P. Pohl, "Detailed analysis of the longitudinal acousto-optical resonances in a fiber Bragg modulator," Opt. Express 21, 6997-7007 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-6-6997


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. F. Liu, P. S. Russell, and L. Dong, “Acousto-optic superlattice modulator using a fiber Bragg grating,” Opt. Lett. 22(19), 1515–1517 (1997). [CrossRef] [PubMed]
  2. R. E. Silva and A. A. P. Pohl, “Characterization of flexural acoustic waves in optical fibers using an extrinsic Fabry–Perot interferometer,” Meas. Sci. Technol. 23(5), 055206 (2012). [CrossRef]
  3. R. A. Oliveira, K. Cook, J. Canning, and A. A. P. Pohl, “Bragg grating writing in acoustically excited optical fiber,” Appl. Phys. Lett. 97(4), 5–6 (2010). [CrossRef]
  4. M. Delgado-Pinar, D. Zalvidea, A. Diez, P. Perez-Millan, and M. Andres, “Q-switching of an all-fiber laser by acousto-optic modulation of a fiber Bragg grating,” Opt. Express 14(3), 1106–1112 (2006). [CrossRef] [PubMed]
  5. P. de Tarso Neves and A. de Almeida Prado Pohl, “Time analysis of the wavelength shift in fiber Bragg gratings,” J. Lightwave Technol. 25(11), 3580–3588 (2007). [CrossRef]
  6. R. A. Oliveira, P. T. Neves, J. T. Pereira, and A. A. P. Pohl, “Numerical approach for designing a Bragg grating acousto-optic modulator using the finite element and the transfer matrix methods,” Opt. Commun. 281(19), 4899–4905 (2008). [CrossRef]
  7. R. A. Oliveira, P. T. Neves, J. T. Pereira, J. Canning, and A. A. P. Pohl, “Vibration mode analysis of a silica horn–fiber Bragg grating device,” Opt. Commun. 283(7), 1296–1302 (2010). [CrossRef]
  8. H. A. Kunkel, S. Locke, and B. Pikeroen, “Finite-element analysis of vibrational modes in piezoelectric ceramic disks,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37(4), 316–328 (1990). [CrossRef] [PubMed]
  9. G. Chesini, V. A. Serrão, M. A. R. Franco, and C. M. B. Cordeiro, “Analysis and optimization of an all-fiber device based on photonic crystal fiber with integrated electrodes,” Opt. Express 18(3), 2842–2848 (2010). [CrossRef] [PubMed]
  10. C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. Brito Cruz, and M. C. J. Large, “Microstructured-core optical fibre for evanescent sensing applications,” Opt. Express 14(26), 13056–13066 (2006). [CrossRef] [PubMed]
  11. A. Ballato, “Modeling piezoelectric and piezomagnetic devices and structures via equivalent networks,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(5), 1189–1240 (2001). [CrossRef] [PubMed]
  12. Ferroperm piezoceramics, “Full data matrix,” http://app04.swwwing.net/swwwing/app/cm/Browse.jsp?PAGE=1417 .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited